تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Rhonda Number
المؤلف:
MathPages.
المصدر:
"Smith Numbers and Rhonda Numbers." https://www.mathpages.com/home/kmath007.htm.
الجزء والصفحة:
...
17-11-2020
1097
A positive integer is called a base-
Rhonda number if the product of the base-
digits of
is equal to
times the sum of
's prime factors. These numbers were named by K. S. Brown after an acquaintance of his whose residence number 25662 satisfies this property. The etymology of the term is therefore similar to the Smith numbers.
25662 is a Rhonda number to base-10 since its prime factorization is
![]() |
(1) |
and the product of its base-10 digits satisfies
![]() |
(2) |
The Rhonda numbers to base 10 are 1568, 2835, 4752, 5265, 5439, 5664, 5824, 5832, 8526, 12985, ... (OEIS A099542). The corresponding sums of prime factors are 24, 24, 28, 30, 54, 72, 32, 24, 48, 72, ... (OEIS A099543).
Rhonda numbers exist only for bases that are composite since there is no way for the product of integers less than a prime to have
as a factor.
The first few Rhonda numbers for small composite bases are summarized in the following table.
![]() |
OEIS | ![]() |
4 | A100968 | 10206, 11935, 12150, 16031, 45030, 94185, ... |
6 | A100969 | 855, 1029, 3813, 5577, 7040, 7304, 15104, 19136, ... |
8 | A100970 | 1836, 6318, 6622, 10530, 14500, 14739, 17655, 18550, 25398, ... |
9 | A100973 | 15540, 21054, 25331, 44360, 44660, 44733, 47652, ... |
10 | A099542 | 1568, 2835, 4752, 5265, 5439, 5664, 5824, 5832, 8526, 12985, ... |
12 | A100971 | 560, 800, 3993, 4425, 4602, 4888, 7315, 8296, 9315, 11849, 12028, ... |
14 | A100972 | 11475, 18655, 20565, 29631, 31725, 45387, 58404, 58667, 59950, ... |
15 | A100974 | 2392, 2472, 11468, 15873, 17424, 18126, 19152, 20079, 24388, ... |
16 | A100975 | 1000, 1134, 6776, 15912, 19624, 20043, 20355, 23946, 26296, ... |
The smallest Rhonda number is 560, which is Rhonda to base 12. The integers that are Rhonda numbers to some base are , 756, 800, 855, 1000, 1029, 1134, 1470, 1568, 1632, 1750, 1815, ... (OEIS A100987).
There exist integers that are Rhonda to more than one base. The smallest of these is 1000, which is Rhonda to bases 16 and 36, and the full sequence of these multiply Rhonda numbers begins 1000, 2940, 4200, 4212, 4725, 5670, 5824, ... (OEIS A100988).
That there are infinitely many Rhonda numbers can be seen from the following explicit construction. For any integer , the number
is a Rhonda number to base
, where
is any integer such that
![]() |
(3) |
and denotes the sum of the prime factors of
. This equation is guaranteed to have at least one solution for
so long as
.
is expressed in base
as
![]() |
(4) |
so the product of the base digits of
is
.
Because sopf is an additive function, we find that
![]() |
(5) |
where in the last step we have made use of (1). Therefore, times the sum of the prime factors of
is equal to
, which is equal to the product of the base
digits of
.
As an example, let us take . Then we require that, from (1) above,
![]() |
(6) |
which is satisfied by , and so
is a Rhonda number to base
.
REFERENCES:
MathPages. "Smith Numbers and Rhonda Numbers." https://www.mathpages.com/home/kmath007.htm.
MathPages. "Infinitely Many Rhondas." https://www.mathpages.com/home/kmath083.htm.
Schneider, W. "Rhonda Numbers." https://www.wschnei.de/digit-related-numbers/rhonda-numbers.html.
Sloane, N. J. A. Sequences A099542, A099543, A100968, A100969, A100970, A100971, A100972, A100973, A100974, A100975, A100987, and A100988 in "The On-Line Encyclopedia of Integer Sequences."