1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Quadratic Reciprocity Theorem

المؤلف:  Courant, R. and Robbins, H

المصدر:  What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press

الجزء والصفحة:  ...

20-10-2020

2144

Quadratic Reciprocity Theorem

If p and q are distinct odd primes, then the quadratic reciprocity theorem states that the congruences

  x^2=q (mod p) 
 x^2=p (mod q)

(1)

are both solvable or both unsolvable unless both p and q leave the remainder 3 when divided by 4 (in which case one of the congruences is solvable and the other is not). Written symbolically,

 (p/q)(q/p)=(-1)^((p-1)(q-1)/4),

(2)

where

 (p/q)=<span style={1 for x^2=p (mod q) solvable for x; -1 for x^2=p (mod q) not solvable for x " src="https://mathworld.wolfram.com/images/equations/QuadraticReciprocityTheorem/NumberedEquation3.gif" style="height:44px; width:290px" />

(3)

is known as a Legendre symbol.

Gauss called this result the "aureum theorema" (golden theorem).

Euler stated the theorem in 1783 without proof. Legendre was the first to publish a proof, but it was fallacious. In 1796, Gauss became the first to publish a correct proof (Nagell 1951, p. 144). The quadratic reciprocity theorem was Gauss's favorite theorem from number theory, and he devised no fewer than eight different proofs of it over his lifetime.

The genus theorem states that the Diophantine equation

 x^2+y^2=p

(4)

can be solved for p a prime iff p=1 (mod 4) or p=2.


REFERENCES:

Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, p. 39, 1996.

Ireland, K. and Rosen, M. "Quadratic Reciprocity." Ch. 5 in A Classical Introduction to Modern Number Theory, 2nd ed. New York:Springer-Verlag, pp. 50-65, 1990.

Jones, G. A. and Jones, J. M. "Quadratic Reciprocity." §7.4 in Elementary Number Theory. Berlin:Springer-Verlag, pp. 130-135, 1998.

Nagell, T. "The Quadratic Reciprocity Law." §41 in Introduction to Number Theory. New York: Wiley, pp. 141-145, 1951.

Riesel, H. "The Law of Quadratic Reciprocity." Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 279-281, 1994.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 42-49, 1993.

EN

تصفح الموقع بالشكل العمودي