1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Regular Prime

المؤلف:  Buhler, J.; Crandall, R. Ernvall, R.; and Metsankyla, T

المصدر:  "Irregular Primes and Cyclotomic Invariants to Four Million." Math. Comput. 61

الجزء والصفحة:  ...

27-9-2020

1069

Regular Prime

A prime which does not divide the class number h(p) of the cyclotomic field obtained by adjoining a primitive pth root of unity to the field of rationals. A prime p is regular iff p does not divide the numerators of the Bernoulli numbers B_0B_2, ..., B_(p-3). A prime which is not regular is said to be an irregular prime.

In 1915, Jensen proved that there are infinitely many irregular primes. It has not yet been proven that there are an infinite number of regular primes (Guy 1994, p. 145). Of the 283145 primes <4×10^6171548 (or 60.59%) are regular (the conjectured fraction is e^(-1/2) approx 60.65%). The first few are 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, ... (OEIS A007703).


REFERENCES:

Buhler, J.; Crandall, R. Ernvall, R.; and Metsankyla, T. "Irregular Primes and Cyclotomic Invariants to Four Million." Math. Comput. 61, 151-153, 1993.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 145, 1994.

Ribenboim, P. "Regular Primes." §5.1 in The New Book of Prime Number Records. New York: Springer-Verlag, pp. 323-329, 1996.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, p. 153, 1993.

Sloane, N. J. A. Sequence A007703/M2411 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي