1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Bell Number

المؤلف:  Becker, H. W. and Browne, D. E.

المصدر:  "Problem E461 and Solution." Amer. Math. Monthly 48

الجزء والصفحة:  ...

20-9-2020

2376

Bell Number

The number of ways a set of n elements can be partitioned into nonempty subsets is called a Bell number and is denoted B_n (not to be confused with the Bernoulli number, which is also commonly denoted B_n).

For example, there are five ways the numbers <span style={1,2,3}" src="https://mathworld.wolfram.com/images/equations/BellNumber/Inline4.gif" style="height:15px; width:47px" /> can be partitioned: <span style={{1},{2},{3}}" src="https://mathworld.wolfram.com/images/equations/BellNumber/Inline5.gif" style="height:15px; width:77px" />, <span style={{1,2},{3}}" src="https://mathworld.wolfram.com/images/equations/BellNumber/Inline6.gif" style="height:15px; width:67px" />, <span style={{1,3},{2}}" src="https://mathworld.wolfram.com/images/equations/BellNumber/Inline7.gif" style="height:15px; width:67px" />, <span style={{1},{2,3}}" src="https://mathworld.wolfram.com/images/equations/BellNumber/Inline8.gif" style="height:15px; width:67px" />, and <span style={{1,2,3}}" src="https://mathworld.wolfram.com/images/equations/BellNumber/Inline9.gif" style="height:15px; width:57px" />, so B_3=5.

B_0=1, and the first few Bell numbers for n=1, 2, ... are 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, ... (OEIS A000110). The numbers of digits in B_(10^n) for n=0, 1, ... are given by 1, 6, 116, 1928, 27665, ... (OEIS A113015).

Bell numbers are implemented in the Wolfram Language as BellB[n].

Though Bell numbers have traditionally been attributed to E. T. Bell as a result of the general theory he developed in his 1934 paper (Bell 1934), the first systematic study of Bell numbers was made by Ramanujan in chapter 3 of his second notebook approximately 25-30 years prior to Bell's work (B. C. Berndt, pers. comm., Jan. 4 and 13, 2010).

The first few prime Bell numbers occur at indices n=2, 3, 7, 13, 42, 55, 2841, ... (OEIS A051130), with no others less than 30447 (Weisstein, Apr. 23, 2006). These correspond to the numbers 2, 5, 877, 27644437, ... (OEIS A051131). B_(2841) was proved prime by I. Larrosa Canestro in 2004 after 17 months of computation using the elliptic curve primality proving program PRIMO.

BellNumbers

Bell numbers are closely related to Catalan numbers. The diagram above shows the constructions giving B_3=5 and B_4=15, with line segments representing elements in the same subset and dots representing subsets containing a single element (Dickau). The integers B_n can be defined by the sum

 B_n=sum_(k=0)^nS(n,k),

(1)

where S(n,k) is a Stirling number of the second kind, i.e., as the Stirling transform of the sequence 1, 1, 1, ....

The Bell numbers are given in terms of generalized hypergeometric functions by

 B_n=e^(-1)_(n-1)F_(n-1)(2,...,2_()_(n-1);1,...,1_()_(n-1);1)

(2)

(K. A. Penson, pers. comm., Jan. 14, 2007).

The Bell numbers can also be generated using the sum and recurrence relation

 B_n=sum_(k=0)^(n-1)B_k(n-1; k),

(3)

where (a; b) is a binomial coefficient, using the formula of Comtet (1974)

 B_n=[e^(-1)sum_(m=1)^(2n)(m^n)/(m!)]

(4)

for n>0, where [x] denotes the ceiling function. Dobiński's formula gives the nth Bell number

 B_n=1/esum_(k=0)^infty(k^n)/(k!).

(5)

A variation of Dobiński's formula gives

B_n = sum_(k=1)^(n)(k^n)/(k!)sum_(j=0)^(n-k)((-1)^j)/(j!)

(6)

= sum_(m=1)^(n)(m^n!(n-m))/(Gamma(m+1)Gamma(n-m+1))

(7)

where !n is a subfactorial (Pitman 1997).

A double sum is given by

 B_n=sum_(k=1)^nsum_(i=1)^k((-1)^(k-i)i^n)/(k!).

(8)

The Bell numbers are given by the generating function

G(x) = 1/esum_(k=0)^(infty)1/((1-kx)k!)

(9)

= sum_(k=0)^(infty)(x^k)/((-x)^k((x-1)/x)_k)

(10)

= (_1F_1(-1/x;(x-1)/x;1))/e

(11)

= ((-1)^(1/x)[xGamma(1-x^(-1))+Gamma(-x^(-1),-1)])/(ex)

(12)

= sum_(n=0)^(infty)B_nx^n

(13)

= 1+x+2x^2+5x^3+15x^4+52x^5+...,

(14)

and the exponential generating function

 e^(e^x-1)=sum_(n=0)^infty(B_n)/(n!)x^n.

(15)

An amazing integral representation for B_n was given by Cesàro (1885),

B_n = (2n!)/(pie)I[int_0^pie^(e^(e^(ntheta)))sin(ntheta)dtheta]

(16)

= (2n!)/(pie)int_0^pie^(e^(costheta)cos(sint))sin[e^(costheta)sin(sintheta)]sin(ntheta)dtheta

(17)

(Becker and Browne 1941, Callan 2005), where I[z] denotes the imaginary part of z.

The Bell number B_n is also equal to phi_n(1), where phi_n(x) is a Bell polynomial.

de Bruijn (1981) gave the asymptotic formula

 (lnB_n)/n=lnn-lnlnn-1+(lnlnn)/(lnn)+1/(lnn)+1/2((lnlnn)/(lnn))^2+O[(lnlnn)/((lnn)^2)].

(18)

Lovász (1993) showed that this formula gives the asymptotic limit

 B_n∼n^(-1/2)[lambda(n)]^(n+1/2)e^(lambda(n)-n-1),

(19)

where lambda(n) is given by

 lambda(n)=n/(W(n)),

(20)

with W(n) the Lambert W-function (Graham et al. 1994, p. 493). Odlyzko (1995) gave

 B_n∼(n!)/(sqrt(2piW^2(n)e^(W(n))))(e^(e^(W(n))-1))/(W^n(n)).

(21)

Touchard's congruence states

 B_(p+k)=B_k+B_(k+1) (mod p),

(22)

when p is prime. This gives as a special case for k=0 the congruence

 B_p=2 (mod p)

(23)

for n prime. It has been conjectured that

 B_(n+(p^p-1)/(p-1))=B_n (mod p)

(24)

gives the minimum period of B_n (mod p). The sequence of Bell numbers <span style={B_1,B_2,...}" src="https://mathworld.wolfram.com/images/equations/BellNumber/Inline70.gif" style="height:15px; width:70px" /> is periodic (Levine and Dalton 1962, Lunnon et al. 1979) with periods for moduli m=1, 2, ... given by 1, 3, 13, 12, 781, 39, 137257, 24, 39, 2343, 28531167061, 156, ... (OEIS A054767).

The Bell numbers also have the curious property that

|B_0 B_1 B_2 ... B_n; B_1 B_2 B_3 ... B_(n+1); | | | ... |; B_n B_(n+1) B_(n+2) ... B_(2n)| = product_(i=1)^(n)i!

(25)

= G(n+2)

(26)

(Lenard 1992), where the product is simply a superfactorial and G(n) is a Barnes G-function, the first few of which for n=0, 1, 2, ... are 1, 1, 2, 12, 288, 34560, 24883200, ... (OEIS A000178).


REFERENCES:

Becker, H. W. and Browne, D. E. "Problem E461 and Solution." Amer. Math. Monthly 48, 701-703, 1941.

Bell, E. T. "Exponential Numbers." Amer. Math. Monthly 41, 411-419, 1934.

Blasiak, P.; Penson, K. A.; and Solomon, A. I. "Dobiński-Type Relations and the Log-Normal Distribution." J. Phys. A: Math. Gen. 36, L273-278, 2003.

Callan, D. "Cesàro's integral formula for the Bell numbers (corrected)." Oct. 3, 2005. https://www.stat.wisc.edu/~callan/papersother/cesaro/cesaro.pdf.

Cesàro, M. E. "Sur une équation aux différences mêlées." Nouv. Ann. Math. 4, 36-40, 1885.

Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, 1974.

Conway, J. H. and Guy, R. K. In The Book of Numbers. New York: Springer-Verlag, pp. 91-94, 1996.

de Bruijn, N. G. Asymptotic Methods in Analysis. New York: Dover, pp. 102-109, 1981.

Dickau, R. M. "Bell Number Diagrams." https://mathforum.org/advanced/robertd/bell.html.

Dickau, R. "Visualizing Combinatorial Enumeration." Mathematica in Educ. Res. 8, 11-18, 1999.

Gardner, M. "The Tinkly Temple Bells." Ch. 2 in Fractal Music, Hypercards, and More Mathematical Recreations from Scientific American Magazine. New York: W. H. Freeman, pp. 24-38, 1992.

Gould, H. W. Bell & Catalan Numbers: Research Bibliography of Two Special Number Sequences, 6th ed. Morgantown, WV: Math Monongliae, 1985.

Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.

Lenard, A. In Fractal Music, Hypercards, and More Mathematical Recreations from Scientific American Magazine. (M. Gardner). New York: W. H. Freeman, pp. 35-36, 1992.

Larrosa Canestro, I. "Bell(2841) Is Prime." Feb. 13, 2004. https://groups.yahoo.com/group/primenumbers/message/14558.

Levine, J. and Dalton, R. E. "Minimum Periods, Modulo p, of First Order Bell Exponential Integrals." Math. Comput. 16, 416-423, 1962.

Lovász, L. Combinatorial Problems and Exercises, 2nd ed. Amsterdam, Netherlands: North-Holland, 1993.

Lunnon, W. F.; Pleasants, P. A. B.; and Stephens, N. M. "Arithmetic Properties of Bell Numbers to a Composite Modulus, I." Acta Arith. 35, 1-16, 1979.

Odlyzko, A. M. "Asymptotic Enumeration Methods." In Handbook of Combinatorics, Vol. 2 (Ed. R. L. Graham, M. Grötschel, and L. Lovász). Cambridge, MA: MIT Press, pp. 1063-1229, 1995. https://www.dtc.umn.edu/~odlyzko/doc/asymptotic.enum.pdf.

Penson, K. A.; Blasiak, P.; Duchamp, G.; Horzela, A.; and Solomon, A. I. "Hierarchical Dobiński-Type Relations via Substitution and the Moment Problem." 26 Dec 2003. https://www.arxiv.org/abs/quant-ph/0312202/.

Pitman, J. "Some Probabilistic Aspects of Set Partitions." Amer. Math. Monthly 104, 201-209, 1997.

Rota, G.-C. "The Number of Partitions of a Set." Amer. Math. Monthly 71, 498-504, 1964.

Sixdeniers, J.-M.; Penson, K. A.; and Solomon, A. I. "Extended Bell and Stirling Numbers from Hypergeometric Functions." J. Integer Sequences 4, No. 01.1.4, 2001. https://www.math.uwaterloo.ca/JIS/VOL4/SIXDENIERS/bell.html.

Sloane, N. J. A. Sequences A000110/M1484, A000178/M2049, A051130, A051131, A054767, and A113015 in "The On-Line Encyclopedia of Integer Sequences."

Stanley, R. P. Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, pp. 33-34, 1999.

Stanley, R. P. Enumerative Combinatorics, Vol. 2. Cambridge, England: Cambridge University Press, p. 13, 1999.

Wilson, D. "Bell Number Question." math-fun@cs.arizona.edu mailing list. 16 Jul 2007.

EN

تصفح الموقع بالشكل العمودي