تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Euclid,s Theorems
المؤلف:
Ball, W. W. R. and Coxeter, H. S. M.
المصدر:
Mathematical Recreations and Essays, 13th ed. New York: Dover
الجزء والصفحة:
...
12-9-2020
2962
A theorem sometimes called "Euclid's first theorem" or Euclid's principle states that if is a prime and
, then
or
(where
means divides). A corollary is that
(Conway and Guy 1996). The fundamental theorem of arithmetic is another corollary (Hardy and Wright 1979).
Euclid's second theorem states that the number of primes is infinite. This theorem, also called the infinitude of primes theorem, was proved by Euclid in Proposition IX.20 of the Elements (Tietze 1965, pp. 7-9). Ribenboim (1989) gives nine (and a half) proofs of this theorem. Euclid's elegant proof proceeds as follows. Given a finite sequence of consecutive primes 2, 3, 5, ..., , the number
![]() |
(1) |
known as the th Euclid number when
is the
th prime, is either a new prime or the product of primes. If
is a prime, then it must be greater than the previous primes, since one plus the product of primes must be greater than each prime composing the product. Now, if
is a product of primes, then at least one of the primes must be greater than
. This can be shown as follows.
If is composite and has no prime factors greater than
, then one of its factors (say
) must be one of the primes in the sequence, 2, 3, 5, ...,
. It therefore divides the product
. However, since it is a factor of
, it also divides
. But a number which divides two numbers
and
also divides their difference
, so
must also divide
![]() |
(2) |
However, in order to divide 1, must be 1, which is contrary to the assumption that it is a prime in the sequence 2, 3, 5, .... It therefore follows that if
is composite, it has at least one factor greater than
. Since
is either a prime greater than
or contains a prime factor greater than
, a prime larger than the largest in the finite sequence can always be found, so there are an infinite number of primes. Hardy (1992) remarks that this proof is "as fresh and significant as when it was discovered" so that "two thousand years have not written a wrinkle" on it.
A similar argument shows that and
![]() |
(3) |
must be either prime or be divisible by a prime . Kummer used a variation of this proof, which is also a proof by contradiction. It assumes that there exist only a finite number of primes
,
, ...,
. Now define
and consider
. It must be a product of primes, so it has a prime divisor
in common with
. Therefore,
which is nonsense, so we have proved the initial assumption is wrong by contradiction.
It is also true that there are runs of composite numbers which are arbitrarily long. This can be seen by defining
![]() |
(4) |
where is a factorial. Then the
consecutive numbers
,
, ...,
are composite, since
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
Guy (1981, 1988) points out that while is not necessarily prime, letting
be the next prime after
, the number
is conjectured always to be a prime known as a Fortunate prime, though this has not been proven.
REFERENCES:
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 60, 1987.
Conway, J. H. and Guy, R. K. "There are Always New Primes!" In The Book of Numbers. New York: Springer-Verlag, pp. 133-134, 1996.
Cosgrave, J. B. "A Remark on Euclid's Proof of the Infinitude of Primes." Amer. Math. Monthly 96, 339-341, 1989.
Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, p. 22, 1996.
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, p. 34, 2004.
Dunham, W. "Great Theorem: The Infinitude of Primes." Journey through Genius: The Great Theorems of Mathematics. New York: Wiley, pp. 73-75, 1990.
Flannery, S. and Flannery, D. In Code: A Mathematical Journey. London: Profile Books, pp. 42-43, 2000.
Guy, R. K. §A12 in Unsolved Problems in Number Theory. New York: Springer-Verlag, 1981.
Guy, R. K. "The Strong Law of Small Numbers." Amer. Math. Monthly 95, 697-712, 1988.
Hardy, G. H. A Mathematician's Apology. Cambridge, England: Cambridge University Press, 1992.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 28, 2003.
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 3-12, 1989.
Tietze, H. Famous Problems of Mathematics: Solved and Unsolved Mathematics Problems from Antiquity to Modern Times. New York: Graylock Press, pp. 7-9, 1965.