تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Least Common Multiple
المؤلف:
Andrews, G. E.
المصدر:
Number Theory. New York: Dover, 1994.
الجزء والصفحة:
...
22-8-2020
1105
The least common multiple of two numbers and
, variously denoted
(this work; Zwillinger 1996, p. 91; Råde and Westergren 2004, p. 54),
(Gellert et al. 1989, p. 25; Graham et al. 1990, p. 103; Bressoud and Wagon 2000, p. 7; D'Angelo and West 2000, p. 135; Yan 2002, p. 31; Bronshtein et al. 2007, pp. 324-325; , l.c.m.
(Andrews 1994, p. 22; Guy 2004, pp. 312-313), or
, is the smallest positive number
for which there exist positive integers
and
such that
![]() |
(1) |
The least common multiple of more than two numbers is similarly defined.
The least common multiple of ,
, ... is implemented in the Wolfram Language as LCM[a, b, ...].
The least common multiple of two numbers and
can be obtained by finding the prime factorization of each
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
where the s are all prime factors of
and
, and if
does not occur in one factorization, then the corresponding exponent is taken as 0. The least common multiple is then given by
![]() |
(4) |
For example, consider .
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
so
![]() |
(7) |
The plot above shows for rational
, which is equivalent to the numerator of the reduced form of
.
The above plots show a number of visualizations of in the
-plane. The figure on the left is simply
, the figure in the middle is the absolute values of the two-dimensional discrete Fourier transform of
(Trott 2004, pp. 25-26), and the figure at right is the absolute value of the transform of
.
The least common multiples of the first positive integers for
, 2, ... are 1, 2, 6, 12, 60, 60, 420, 840, ... (OEIS A003418; Selmer 1976), which is related to the Chebyshev function
. For
,
(Nair 1982ab, Tenenbaum 1990). The prime number theorem implies that
![]() |
(8) |
as , in other words,
![]() |
(9) |
as .
Let be a common multiple of
and
so that
![]() |
(10) |
Write and
, where
and
are relatively prime by definition of the greatest common divisor
. Then
, and from the division lemma (given that
is divisible by
and
), we have
is divisible by
, so
![]() |
(11) |
![]() |
(12) |
The smallest is given by
,
![]() |
(13) |
so
![]() |
(14) |
The LCM is idempotent
![]() |
(15) |
commutative
![]() |
(16) |
associative
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
distributive
![]() |
(19) |
and satisfies the absorption law
![]() |
(20) |
It is also true that
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
REFERENCES:
Andrews, G. E. Number Theory. New York: Dover, 1994.
Bressoud, D. M. and Wagon, S. A Course in Computational Number Theory. London: Springer-Verlag, 2000.
Bronshtein, I. N.; Semendyayev, K. A.; Musiol, G.; and Muehlig, H. Handbook of Mathematics, 5th ed. Berlin: Springer, 2007.
D'Angelo, J. P. and West, D. B. Mathematical Thinking: Problem-Solving and Proofs, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2000.
Gellert, W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and Künstner, H. (Eds.). VNR Concise Encyclopedia of Mathematics, 2nd ed. New York: Van Nostrand Reinhold, 1989.
Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science. Reading, MA: Addison-Wesley, 1990.
Guy, R. K. "Density of a Sequence with l.c.m. of Each Pair Less than ." §E2 in Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, pp. 312-313, 2004.
Jones, G. A. and Jones, J. M. "Least Common Multiples." §1.3 in Elementary Number Theory. Berlin: Springer-Verlag, pp. 12-13, 1998.
Nagell, T. "Least Common Multiple and Greatest Common Divisor." §5 in Introduction to Number Theory. New York: Wiley, pp. 16-19, 1951.
Nair, M. "A New Method in Elementary Prime Number Theory." J. London Math. Soc. 25, 385-391, 1982a.
Nair, M. "On Chebyshev-Type Inequalities for Primes." Amer. Math. Monthly 89, 126-129, 1982b.
Råde, L. and Westergren, B. Mathematics Handbook for Science and Engineering. Berlin: Springer, 2004.
Selmer, E. S. "On the Number of Prime Divisors of a Binomial Coefficient." Math. Scand. 39, 271-281, 1976.
Sloane, N. J. A. Sequence A003418/M1590 in "The On-Line Encyclopedia of Integer Sequences."
Tenenbaum, G. Introduction à la théorie analytique et probabiliste des nombres. Publications de l'Institut Cartan, pp. 12-13, 1990.
Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. https://www.mathematicaguidebooks.org/.
Yan, S. Y. Number Theory for Computing, 2nd ed. Berlin: Springer, 2002.
Zwillinger, D. (Ed.). "Least Common Multiple." §2.3.6 in CRC Standard Mathematical Tables and Formulae, 30th ed. Boca Raton, FL: CRC Press, p. 91, 1996.