تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Greatest Common Divisor
المؤلف:
Andrews, G. E
المصدر:
Number Theory. New York: Dover, 1994.
الجزء والصفحة:
...
18-7-2020
1199
The greatest common divisor, sometimes also called the highest common divisor (Hardy and Wright 1979, p. 20), of two positive integers and
is the largest divisor common to
and
. For example,
,
, and
. The greatest common divisor
can also be defined for three or more positive integers as the largest divisor shared by all of them. Two or more positive integers that have greatest common divisor 1 are said to be relatively prime to one another, often simply just referred to as being "relatively prime."
Various notational conventions are summarized in the following table.
notation | source |
![]() |
this work, Zwillinger (1996, p. 91), Råde and Westergren (2004, p. 54) |
![]() |
Gellert et al. (1989, p. 25), D'Angelo and West (1990, p. 13), Graham et al. (1990, p. 103), Bressoud and Wagon (2000, p. 7), Yan (2002, p. 30), Bronshtein et al. (2007, pp. 323-324), Wolfram Language |
g.c.d.![]() |
Andrews 1994, p. 22 |
![]() |
The greatest common divisor of ,
, ... is implemented in the Wolfram Language as GCD[a, b, ...].
The plot above shows with rational
. Here,
is the greatest rational number
for which all the
are integers. It is easy to see that if
, where
, then
. Furthermore, if
is extended by setting it equal to 0 if
is irrational, the resulting function is continuous at the irrationals, discontinuous at the rationals, and has Riemann integral equal to 0 over any finite interval.
The above plots show a number of visualizations of in the
-plane. The figure on the left is simply
, the figure in the middle is the absolute values of the two-dimensional discrete Fourier transform of
(Trott 2004, pp. 25-26), and the figure at right is the absolute value of the transform of
.
If is the greatest common divisor of
and
, then
is the largest possible integer satisfying
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
with and
positive integers.
The Euclidean algorithm can be used to find the greatest common divisor of two integers and to find integers and
such that
![]() |
(3) |
The notion can also be generalized to more general rings than simply the integers . However, even for Euclidean rings, the notion of GCD of two elements of a ring is not the same as the GCD of two ideals of a ring. This is sometimes a source of confusion when studying rings other than
, such as polynomial rings in several variables.
To compute the GCD, write the prime factorizations of and
,
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
where the s are all prime factors of
and
, and if
does not occur in one factorization, then the corresponding exponent is taken as 0. Then the greatest common divisor
is given by
![]() |
(6) |
where min denotes the minimum. For example, consider .
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
so
![]() |
(9) |
The GCD is distributive
![]() |
(10) |
![]() |
(11) |
and associative
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
If and
, then
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
so . The GCD is also idempotent
![]() |
(17) |
commutative
![]() |
(18) |
and satisfies the absorption law
![]() |
(19) |
A recurrence equation that converges to for positive odd
and
is given by
![]() |
(20) |
with and
, where
is the greatest dividing exponent of
in
(Stehlé and Zimmerman 2004). The plot above shows the number of iterations required to converge for odd
.
The probability that two integers picked at random are relatively prime is , where
is the Riemann zeta function. Polezzi (1997) observed that
, where
is the number of lattice points in the plane on the straight line connecting the vectors (0, 0) and
(excluding
itself). This observation is intimately connected with the probability of obtaining relatively prime integers, and also with the geometric interpretation of a reduced fraction
as a string through a lattice of points with ends at (1,0) and
. The pegs it presses against
give alternate convergents
of the continued fraction for
, while the other convergents are obtained from the pegs it presses against with the initial end at (0, 1).
Knuth showed that
![]() |
(21) |
REFERENCES:
Andrews, G. E. Number Theory. New York: Dover, 1994.
Bressoud, D. M. and Wagon, S. A Course in Computational Number Theory. London: Springer-Verlag, 2000.
Bronshtein, I. N.; Semendyayev, K. A.; Musiol, G.; and Muehlig, H. Handbook of Mathematics, 5th ed. Berlin: Springer-Verlag, 2007.
D'Angelo, J. P. and West, D. B. Mathematical Thinking: Problem-Solving and Proofs, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2000.
Gellert, W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and Künstner, H. (Eds.). VNR Concise Encyclopedia of Mathematics, 2nd ed. New York: Van Nostrand Reinhold, 1989.
Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science. Reading, MA: Addison-Wesley, 1990.
Nagell, T. "Least Common Multiple and Greatest Common Divisor." §5 in Introduction to Number Theory. New York: Wiley, pp. 16-19, 1951.
Polezzi, M. "A Geometrical Method for Finding an Explicit Formula for the Greatest Common Divisor." Amer. Math. Monthly 104, 445-446, 1997.
Råde, L. and Westergren, B. Mathematics Handbook for Science and Engineering. Berlin: Springer-Verlag, 2004.
Séroul, R. "The Greatest Common Divisor." §2.4 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 9-11, 2000.
Stehlé, D. and Zimmerman, P. "A Binary Recursive GCD Algorithm." In Algorithmic Number Theory. Proceedings of the 6th International Symposium (ANTS-VI) held at the University of Vermont, Burlington, VT, June 13-18, 2004 (Ed. D. Buell). Berlin: Springer-Verlag, pp. 411-425, 2004.
Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, pp. 25-26, 2004. https://www.mathematicaguidebooks.org/.
Yan, S. Y. Number Theory for Computing, 2nd ed. Berlin: Springer, 2002.
Zwillinger, D. (Ed.). "Greatest Common Divisor." §2.3.5 in CRC Standard Mathematical Tables and Formulae, 30th ed. Boca Raton, FL: CRC Press, p. 91, 1996.