تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Ramanujan,s Square Equation
المؤلف:
Bundschuh, P.
المصدر:
"On the Diophantine Equation of Ramanujan-Nagell." In Seminar on Diophantine Approximation. Papers from the Seminar Held in Yokohama, April 6-8, 1987. Yokohama, Japan: Keio University, Department of Mathematics
الجزء والصفحة:
...
9-6-2020
2319
In 1913, Ramanujan asked if the Diophantine equation of second order
![]() |
sometimes called the Ramanujan-Nagell equation, has any solutions other than , 4, 5, 7, and 15 (Schroeppel 1972, Item 31; Ramanujan 2000, p. 327; OEIS A060728). These correspond to
, 3, 5, 11, and 181 (OEIS A038198). Nagell (1948) and Skolem et al. (1959) showed there are no solutions past
, thus establishing Ramanujan's question in the negative.
A generalization to two variables and
was considered by Euler (Engel 1998, p. 126).
REFERENCES:
Bundschuh, P. "On the Diophantine Equation of Ramanujan-Nagell." In Seminar on Diophantine Approximation. Papers from the Seminar Held in Yokohama, April 6-8, 1987. Yokohama, Japan: Keio University, Department of Mathematics, pp. 31-40, 1988.
Cohen, E. L. "On the Ramanujan-Nagell Equation and Its Generalizations." In Number Theory. Proceedings of the First Conference of the Canadian Number Theory Association held in Banff, Alberta, April 17-27, 1988 (Ed. R. A. Mollin). Berlin: de Gruyter, pp. 81-92, 1990.
Engel, A. Problem-Solving Strategies. New York: Springer-Verlag, 1998.
Johnson, W. "The Diophantine Equation ." Amer. Math. Monthly 94. 59-62, 1987.
Mignotte, M. "Une nouvelle résolution de l'équation ." Rend. Sem. Fac. Sci. Univ. Cagliari 54, 41-43, 1984.
Mordell, L. J. Diophantine Equations. New York: Academic Press, p. 205, 1969.
Nagell, T. Nordisk Mat. Tidskr. 30, 62-64, 1948.
Nagell, T "The Diophantine Equation ." Arkiv för Mat. 4, 185-187, 1960.
Ramanujan, S. Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., p. 327, 2000.
Ramasmay, A. M. S. "Ramanujan's Equation." J. Ramanujan Math. Soc. 7, 133-153, 1992.
Roberts, J. The Lure of the Integers. Washington, DC: Math. Assoc. Amer., pp. 90-91, 1992.
Schroeppel, R. C. Item 31 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 14, Feb. 1972. https://www.inwap.com/pdp10/hbaker/hakmem/number.html#item31.
Skolem, T.; Chowla, S.; and Lewis, D. J. "The Diophantine Equation and Related Problems." Proc. Amer. Math. Soc. 10, 663-669, 1959.
Sloane, N. J. A. Sequences A038198 and A060728 in "The On-Line Encyclopedia of Integer Sequences."
Stewart, I. and Tall, D. Algebraic Number Theory. New York: Chapman and Hall, 1987.
Turnwald, G. "A Note on the Ramanujan-Nagell Equation, in Number-Theoretic Analysis." In Number-Theoretic Analysis. Proceedings of the Seminar Held at the University of Vienna and at the Technical University of Vienna, Vienna, 1988-1989 (Ed. H. Hlawka and R. F. Tichy). Berlin: Springer-Verlag, pp. 206-207, 1990.