1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Diophantine Equation--2nd Powers

المؤلف:  Bell, E. T

المصدر:  The Development of Mathematics, 2nd ed. New York: McGraw-Hill

الجزء والصفحة:  ...

20-5-2020

2448

Diophantine Equation--2nd Powers

A general quadratic Diophantine equation in two variables x and y is given by

 ax^2+cy^2=k,

(1)

where ac, and k are specified (positive or negative) integers and x and y are unknown integers satisfying the equation whose values are sought. The slightly more general second-order equation

 ax^2+bxy+cy^2=k

(2)

is one of the principal topics in Gauss's Disquisitiones arithmeticae. According to Itô (1987), equation (2) can be solved completely using solutions to the Pell equation. In particular, all solutions of

 ax^2+bxy+cy^2=1

(3)

are among the convergents of the continued fractions of the roots of ax^2+bx+c.

Solution to the general bivariate quadratic Diophantine equation is implemented in the Wolfram Language as Reduce[eqn && Element[x|yIntegers], <span style={" src="https://mathworld.wolfram.com/images/equations/DiophantineEquation2ndPowers/Inline9.gif" style="height:15px; width:5px" />xy<span style=}" src="https://mathworld.wolfram.com/images/equations/DiophantineEquation2ndPowers/Inline10.gif" style="height:15px; width:5px" />].

For quadratic Diophantine equations in more than two variables, there exist additional deep results due to C. L. Siegel.

An equation of the form

 x^2-Dy^2=1,

(4)

where D is an integer is a very special type of equation called a Pell equation. Pell equations, as well as the analogous equation with a minus sign on the right, can be solved by finding the continued fraction for sqrt(D). The more complicated equation

 x^2-Dy^2=c

(5)

can also be solved for certain values of c and D, but the procedure is more complicated (Chrystal 1961). However, if a single solution to (5) is known, other solutions can be found using the standard technique for the Pell equation.

The following table summarizes possible representation of primes p of given forms, where x and y are positive integers. No odd primes other than those indicated share these properties (Nagell 1951, p. 188).

form congruence for p
x^2+y^2 =1 (mod 4)
x^2+2y^2 =1,3 (mod 8)
x^2+3y^2 =1 (mod 6)
x^2+7y^2 =1,9,11 (mod 14)
2x^2+3y^2 =5,11 (mod 24)

As a part of the study of Waring's problem, it is known that every positive integer is a sum of no more than 4 positive squares (g(2)=4; Lagrange's four-square theorem), that every "sufficiently large" integer is a sum of no more than 4 positive squares (G(2)=4), and that every integer is a sum of at most 3 signed squares (eg(2)=3). If zero is counted as a square, both positive and negative numbers are included, and the order of the two squares is distinguished, Jacobi showed that the number of ways a number can be written as the sum of two squares (the r_2(n) function) is four times the excess of the number of divisors of the form 4x+1 over the number of divisors of the form 4x-1.

Given an initial solution (x,y,z)=(m,n,p) to the equation

 ax^2+bxy+cy^2=dz^2,

(6)

a quadratic parametrization can be found using the identity

 (ax^2+bxy+cy^2-dz^2) 
 =(am^2+bmn+cn^2-dp^2)(au^2+buv+cv^2)^2,

(7)

where

x = (am+bn)u^2+2cnuv-cmv^2

(8)

y = -anu^2+2amuv+(bm+cn)v^2

(9)

z = p(au^2+buv+cv^2)

(10)

for arbitrary u,v (T. Piezas, pers. comm., Apr. 28, 2006).

In 1769 Euler (1862) noted the identity

 alphab(apr+/-betaqs)^2+abeta(alphaps∓bqr)^2=(aalphap^2+bbetaq^2)(abr^2+alphabetas^2),

(11)

which gives a parametric solution to the equation

 Ax^2+By^2=C

(12)

for integers A,B,C,x,y with C composite (Dickson 2005, p. 407).

Call a Diophantine equation consisting of finding a sum of m kth powers which is equal to a sum of n kth powers a "k.m.n equation." The 2.1.2 quadratic Diophantine equation

 A^2=B^2+C^2,

(13)

corresponds to finding a Pythagorean triple (ABC) has a well-known general solution (Dickson 2005, pp. 165-170). To solve the equation, note that every prime of the form 4x+1 can be expressed as the sum of two relatively prime squares in exactly one way. A set of integers satisfying the 2.1.3 equation

 A^2=B^2+C^2+D^2

(14)

is called a Pythagorean quadruple.

Parametric solutions to the 2.2.2 equation

 A^2+B^2=C^2+D^2

(15)

are known (Dickson 2005; Guy 1994, p. 140). The number of solutions are given by the sum of squares function r_2(n).

Solutions to an equation of the form

 (A^2+B^2)(C^2+D^2)=E^2+F^2

(16)

are given by the Fibonacci identity

 (a^2+b^2)(c^2+d^2)=(ac+/-bd)^2+(bc∓ad)^2=e^2+f^2.

(17)

Another similar identity is the Euler four-square identity

 (a_1^2+a_2^2)(b_1^2+b_2^2)(c_1^2+c_2^2)(d_1^2+d_2^2)=e_1^2+e_2^2+e_3^2+e_4^2

(18)

 (a_1^2+a_2^2+a_3^2+a_4^2)(b_1^2+b_2^2+b_3^2+b_4^2) 
=(a_1b_1-a_2b_2-a_3b_3-a_4b_4)^2+(a_1b_2+a_2b_1+a_3b_4-a_4b_3)^2+(a_1b_3-a_2b_4+a_3b_1+a_4b_2)^2+(a_1b_4+a_2b_3-a_3b_2+a_4b_1)^2.

(19)

Degen's eight-square identity holds for eight squares, but no other number, as proved by Cayley. The two-square identity underlies much of trigonometry, the four-square identity some of quaternions, and the eight-square identity, the Cayley algebra (a noncommutative nonassociative algebra; Bell 1945).

Chen Shuwen found the 2.6.6 equation

 87^2+233^2+264^2+396^2+496^2+540^2=90^2+206^2+309^2+366^2+522^2+523^2.

(20)

Ramanujan's square equation

 2^n-7=x^2

(21)

has been proved to have only solutions n=3, 4, 5, 7, and 15 (Schroeppel 1972; OEIS A060728). In an unpublished proof, Euler showed that the quadratic Diophantine equation

 2^n=7x^2+y^2

(22)

has a unique solution for every positive n>=3 in which x and y are both odd and positive (Engel 1998, p. 126). Rather amazingly, these can be given analytically by

x = (2^(n/2))/(sqrt(7))|sin[ntan^(-1)(sqrt(7))]|

(23)

y = 2^(n/2)|cos[ntan^(-1)(sqrt(7))]|,

(24)

which is related to the norms of elements of the ring of integers in the quadratic field Q(sqrt(-7)) which exhibits unique factorization (Hickerson 2002). The first few solutions (x,y) for n=1, 2, 3, ... are (1, 1), (1, 3), (1, 5), (3, 1), (1, 11), (5, 9), (7, 13), (3, 31), ... (OEIS A077020 and A077021).


REFERENCES:

Beiler, A. H. "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, pp. 248-268, 1966.

Bell, E. T. The Development of Mathematics, 2nd ed. New York: McGraw-Hill, p. 159, 1945.

Chrystal, G. Textbook of Algebra, 2 vols. New York: Chelsea, 1961.

Degan, C. F. Canon Pellianus. Copenhagen, Denmark, 1817.

Dickson, L. E. "Number of Representations as a Sum of 5, 6, 7, or 8 Squares." Ch. 13 in Studies in the Theory of Numbers. Chicago, IL: University of Chicago Press, 1930.

Dickson, L. E. "Pell Equation; ax^2+bx+c Made a Square" and "Further Single Equations of the Second Degree." Chs. 12-13 in History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, pp. 341-434, 2005.

Engel, A. Problem-Solving Strategies. New York: Springer-Verlag, 1998.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994.

Hickerson, D. "Re: Diophantine sequence" seqfan@ext.jussieu.fr mailing list. 17 Oct 2002.

Itô, K. (Ed.). Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1. Cambridge, MA: MIT Press, p. 450, 1987.

Lam, T. Y. The Algebraic Theory of Quadratic Forms. Reading, MA: W. A. Benjamin, 1973.

Nagell, T. "Diophantine Equations of the Second Degree." Ch. 6 in Introduction to Number Theory. New York: Wiley, pp. 188-226, 1951.

Rajwade, A. R. Squares. Cambridge, England: Cambridge University Press, 1993.

Scharlau, W. Quadratic and Hermitian Forms. Berlin: Springer-Verlag, 1985.

Schroeppel, R. Item 31 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 14, Feb. 1972. https://www.inwap.com/pdp10/hbaker/hakmem/number.html#item31.

Shapiro, D. B. "Products of Sums and Squares." Expo. Math. 2, 235-261, 1984.

Sloane, N. J. A. Sequences A060728, A077020, and A077021 in "The On-Line Encyclopedia of Integer Sequences."

Smarandache, F. "Un metodo de resolucion de la ecuacion diofantica." Gaz. Math. 1, 151-157, 1988.

Smarandache, F. "Method to Solve the Diophantine Equation ax^2-by^2+c=0." In Collected Papers, Vol. 1. Bucharest, Romania: Tempus, 1996.

Taussky, O. "Sums of Squares." Amer. Math. Monthly 77, 805-830, 1970.

Whitford, E. E. The Pell Equation. New York: Columbia University Press, 1912.

EN

تصفح الموقع بالشكل العمودي