1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Golomb-Dickman Constant Continued Fraction

المؤلف:  Sloane, N. J. A.

المصدر:  Sequences A225336, A225337, A225363, and A225364 in "The On-Line Encyclopedia of Integer Sequences."

الجزء والصفحة:  ...

4-5-2020

1102

Golomb-Dickman Constant Continued Fraction

Golomb-DickmanConstantContinuedFraction

The simple continued fraction of the Golomb-Dickman constant lambda is [0; 1, 1, 1, 1, 1, 22, 1, 2, 3, 1, 1, 11, ...] (OEIS A225336). Note that this continued fraction appears to contain an unusually large number of 1s (and in general small terms), with 41.6% of the first 14510 terms being 1, 16.8% being 2, and so on (E. Weisstein, Jul. 25, 2013).

Golomb-DickmanConstantContinuedFractionFirstOccurrences

The plot above shows the positions of the first occurrences of 1, 2, 3, ... in the continued fraction, the first few of which are 1, 8, 9, 30, 25, 18, 110, 242, 59, 100, 12, 71, 28, 153, 225, 114, 159, 66, ... (OEIS A225364). The smallest positive integers not appearing in the first 14510 terms of the continued fraction are 90, 108, 110, 124, ... (E. W. Weisstein, Jul. 25, 2013).

The sequence of largest terms in the continued fraction is 0, 1, 22, 28, 43, 48, 66, 491, 1706, 4763, 38371, ... (OEIS A225337), which occur at positions 0, 1, 6, 24, 39, 50, 52, 72, 259, 1002, 4610, ... (OEIS A225363).

Golomb-DickmanKhinchinLevy

Let the continued fraction of lambda be denoted [a_0;a_1,a_2,...] and let the denominators of the convergents be denoted q_1q_2, ..., q_n. Then plots above show successive values of a_1^(1/1)(a_1a_2)^(1/2)(a_1a_2...a_n)^(1/n), which appear to converge to Khinchin's constant (left figure) and q_n^(1/n), which appear to converge to the Lévy constant (right figure), although neither of these limits has been rigorously established.


REFERENCES:

Sloane, N. J. A. Sequences A225336, A225337, A225363, and A225364 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي