1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Ternary

المؤلف:  Erdős, P. and Graham, R. L.

المصدر:  Old and New Problems and Results in Combinatorial Number Theory. Geneva, Switzerland: L,Enseignement Mathématique Université de Genève, Vol. 28

الجزء والصفحة:  ...

14-12-2019

1347

Ternary

The base-3 method of counting in which only the digits 0, 1, and 2 are used. Ternary numbers arise in a number of problems in mathematics, including some problems of weighing. However, according to Knuth (1998), "no substantial application of balanced ternary notation has been made" (balanced ternary uses digits -1, 0, and 1 instead of 0, 1, and 2).

Ternary

The illustration above shows a graphical representation of the numbers 0 to 25 in ternary, and the following table gives the ternary equivalents of the first few decimal numbers. The concatenation of the ternary digits of the consecutive numbers 0, 1, 2, 3, ... gives (0), (1), (2), (1, 0), (1, 1), (1, 2), (2, 0), ... (OEIS A054635).

1 1 11 102 21 210
2 2 12 110 22 211
3 10 13 111 23 212
4 11 14 112 24 220
5 12 15 120 25 221
6 20 16 121 26 222
7 21 17 122 27 1000
8 22 18 200 28 1001
9 100 19 201 29 1002
10 101 20 202 30 1010

Ternary digits have the following multiplication table.

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 11

A ternary representation can be used to uniquely identify totalistic cellular automaton rules, where the three colors (white, gray, and black) correspond to the three numbers 0, 1 and 2 (Wolfram 2002, pp. 60-70 and 886). For example, the ternary digits 0211020_3, lead to the code 600 totalistic cellular automaton.

Every even number represented in ternary has an even number (possibly 0) of 1s. This is true since a number is congruent mod (b-1) to the sum of its base-b digits. In the case b=3, there is only one digit (1) which is not a multiple of b-1, so all we have to do is "cast out twos" and count the number of 1s in the base-3 representation.

The following table gives 2^n for n=1, 2, ... in ternary.

2^1 = 2_3

(1)

2^2 = 11_3

(2)

2^3 = 22_3

(3)

2^4 = 121_3

(4)

2^5 = 1012_3

(5)

2^6 = 2101_3

(6)

2^7 = 11202_3.

(7)

N. J. A. Sloane conjectured that for any integer n>152^n always has a 0 in its ternary expansion (Sloane 1973; Vardi 1991, p. 28). Known values of n such that 2^n lacks a 0 are 1, 2, 3, 4, 15 (OEIS A102483), with no others up to 10^5 (E. W. Weisstein, Apr. 8, 2006). The positions (counting from the least significant ternary digits) of the first 0 digit in (2^1)_3(2^2)_3, ..., are 0, 0, 0, 0, 3, 2, 2, 4, 4, 5, 4, 2, 2, 4, 0, 3, 4, (OEIS A117971).

Similarly, 2^n always has a 1 in its ternary expansion except for n=1, 1, 3, and 9, with no others up to 10^5 (E. W. Weisstein, Apr. 8, 2006).

Erdős and Graham (1980) conjectured that no power of 2, 2^n, for n>8 is a sum of distinct powers of 3. This is equivalent to the requirement that the ternary expansion of 2^n always contains a 2 for n>8. The fact that the only values not having a two are n=2 and 8 has been verified by Vardi (1991) up to n=2·3^(20)=6.97×10^9. The positions (counting from the least significant ternary digits) of the first 2 digit in (2^1)_3(2^2)_3, ..., are 1, 0, 1, 2, 1, 4, 1, 0, 1, 2, 1, 3, 1, 3, ... (OEIS A117970).


REFERENCES:

Erdős, P. and Graham, R. L. Old and New Problems and Results in Combinatorial Number Theory. Geneva, Switzerland: L'Enseignement Mathématique Université de Genève, Vol. 28, 1980.

Gardner, M. "The Ternary System." Ch. 11 in The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, pp. 104-112, 1984.

Knuth, D. E. The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, pp. 173-175, 1998.

Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University Press, pp. 10-11, 1991.

Sloane, N. J. A. Sequences A054635, A102483, A117970, and A117970 in "The On-Line Encyclopedia of Integer Sequences."

Sloane, N. J. A. "The Persistence of a Number." J. Recr. Math. 6, 97-98, 1973.

Vardi, I. "The Digits of 2^n in Base Three." Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 20-25, 1991.

Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 60-70 and 886, 2002.

EN

تصفح الموقع بالشكل العمودي