x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Long Multiplication
المؤلف: المرجع الالكتروني للمعلوماتيه
المصدر: المرجع الالكتروني للمعلوماتيه
الجزء والصفحة: ...
14-11-2019
690
For example, we can multiply . The number with more digits is usually selected as the multiplicand:
The long multiplication algorithm starts with multiplying the multiplicand by the least significant digit of the multiplier to produce a partial product, then continuing this process for all higher order digits in the multiplier. Each partial product is right-aligned with the corresponding digit in the multiplier. The partial products are then summed:
Implicit in using this method is the following principle. The multiplier can be expresses as . So we are first multiplying 384 by 6, then multiplying 384 by 50 and then adding the two results together. This produces the correct answer because multiplication is distributive over addition for the set of real numbers .
Long multiplication of two -digit numbers takes approximately multiplication operations. This is said to be a time complexity of order or .
As previously mentioned, the number with more digits is usually chosen as the multiplicand (top number); this choice will involve fewer partial products to generate and then add together. However, if the longer number contains zeroes or repeated digits, it may be advantageous to choose this number as the multiplier and use the shorter number as the multiplicand.
As an example, we can compute . In this case it is more efficient to use 220002 as the multiplier instead of 674, since three of its digits are "0" and three are "2." Multiplying by "0" only involves shifting the next partial product left by one place, and multiplying by each successive "2" after the first (the units digit in the number) only requires copying the result from the first"" multiplication:
The long multiplication method may also be used to multiply two polynomials. One additional concern with multiplying polynomials is that only terms with identical variables and exponents can be added together. So careful alignment of terms when computing partial products is essential.
For example, let us compute . When multiplying by each term in the multiplier, space should be left for powers of which are missing. This will allow for easier alignment when all partial polynomial products are added together.
An alternative to long multiplication for numbers is the lattice method.