تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Jacobi Triple Product
المؤلف:
Andrews, G. E
المصدر:
q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc.
الجزء والصفحة:
...
29-9-2019
3480
The Jacobi triple product is the beautiful identity
![]() |
(1) |
In terms of the Q-functions, (1) is written
![]() |
(2) |
which is one of the two Jacobi identities. In q-series notation, the Jacobi triple product identity is written
![]() |
(3) |
for and
(Gasper and Rahman 1990, p. 12; Leininger and Milne 1999). Another form of the identity is
![]() |
(4) |
(Hirschhorn 1999).
Dividing (4) by and letting
gives the limiting case
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
(Jacobi 1829; Hardy and Wright 1979; Hardy 1999, p. 87; Hirschhorn 1999; Leininger and Milne 1999).
For the special case of , (◇) becomes
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
where is a Jacobi elliptic function. In terms of the two-variable Ramanujan theta function
, the Jacobi triple product is equivalent to
![]() |
(11) |
(Berndt et al. 2000).
One method of proof for the Jacobi identity proceeds by defining the function
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
Then
![]() |
![]() |
![]() |
(14) |
Taking (14) (13),
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
which yields the fundamental relation
![]() |
(17) |
Now define
![]() |
(18) |
![]() |
(19) |
Using (17), (19) becomes
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
so
![]() |
(22) |
Expand in a Laurent series. Since
is an even function, the Laurent series contains only even terms.
![]() |
(23) |
Equation (22) then requires that
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
This can be re-indexed with on the left side of (25)
![]() |
(26) |
which provides a recurrence relation
![]() |
(27) |
so
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
The exponent grows greater by for each increase in
of 1. It is given by
![]() |
(31) |
Therefore,
![]() |
(32) |
This means that
![]() |
(33) |
The coefficient must be determined by going back to (◇) and (◇) and letting
. Then
![]() |
![]() |
![]() |
(34) |
![]() |
![]() |
![]() |
(35) |
![]() |
![]() |
![]() |
(36) |
![]() |
![]() |
![]() |
(37) |
![]() |
![]() |
![]() |
(38) |
since multiplication is associative. It is clear from this expression that the term must be 1, because all other terms will contain higher powers of
. Therefore,
![]() |
(39) |
so we have the Jacobi triple product,
![]() |
![]() |
![]() |
(40) |
![]() |
![]() |
![]() |
(41) |
REFERENCES:
Andrews, G. E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., pp. 63-64, 1986.
Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, p. 222, 2007.
Berndt, B. C.; Huang, S.-S.; Sohn, J.; and Son, S. H. "Some Theorems on the Rogers-Ramanujan Continued Fraction in Ramanujan's Lost Notebook." Trans. Amer. Math. Soc. 352, 2157-2177, 2000.
Borwein, J. M. and Borwein, P. B. "Jacobi's Triple Product and Some Number Theoretic Applications." Ch. 3 in Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 62-101, 1987.
Foata, D. and Han, G.-N. "The Triple, Quintuple and Septuple Product Identities Revisited." In The Andrews Festschrift (Maratea, 1998): Papers from the Seminar in Honor of George Andrews on the Occasion of His 60th Birthday Held in Maratea, August 31-September 6, 1998. Sém. Lothar. Combin. 42, Art. B42o, 1-12, 1999 (electronic).
Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, 1990.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
Hirschhorn, M. D. "Another Short Proof of Ramanujan's Mod 5 Partition Congruences, and More." Amer. Math. Monthly 106, 580-583, 1999.
Jacobi, C. G. J. Fundamenta Nova Theoriae Functionum Ellipticarum. Königsberg, Germany: Regiomonti, Sumtibus fratrum Borntraeger, p. 90, 1829.
Leininger, V. E. and Milne, S. C. "Expansions for and Basic Hypergeometric Series in
." Discr. Math. 204, 281-317, 1999.
Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, p. 470, 1990.