تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Rogers-Ramanujan Continued Fraction
المؤلف:
Andrews, G.
المصدر:
On the General Rogers-Ramanujan Theorem. Providence, RI: Amer. Math. Soc., 1974.
الجزء والصفحة:
...
1-9-2019
3793
The Rogers-Ramanujan continued fraction is a generalized continued fraction defined by
![]() |
(1) |
(Rogers 1894, Ramanujan 1957, Berndt et al. 1996, 1999, 2000). It was discovered by Rogers (1894), independently by Ramanujan around 1913, and again independently by Schur in 1917. Modulo the factor of added for convenience, it provides a geometric series q-analog of the golden ratio
![]() |
(2) |
The convergents of
are given by
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
(OEIS A128915 and A127836; Sills 2003, p. 25, identity 3-14).
The fraction can be expressed in closed form in terms of q-series by
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
and in terms of the Ramanujan theta function
![]() |
(12) |
by
![]() |
(13) |
In the upper half-plane and modulo branch cuts, it can also be expressed exactly in terms of the Dedekind eta function by
![]() |
(14) |
where
![]() |
(15) |
(Trott 2004).
The coefficients of in the Maclaurin series of
for
, 1, 2, ... are 1,
, 1, 0,
, 1,
, 1, 0,
, 2,
, ... (OEIS A007325).
The fraction converges quickly for points sufficiently far from the unit circle in the complex plane. For values , the series converges to a unique value, while for
, it converges to two possible values. The value of the
th convergent of the continued fraction
can be expressed in terms of the unique value inside the unit disk as
(16) |
(Andrews et al. 1992, Trott 2004).
Amazingly, Ramanujan showed that is an algebraic number for all positive rational
. Special cases include
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
where is the root of
near 0.51142....
can be written as
![]() |
(20) |
(Yi 2001, Trott 2004). The values of have been computed by Trott for all values of
, and the algebraic degrees of
,
, ... are 8, 4, 32, 8, 40, 16, 64, 16, 96, 20, ... (OEIS A082682; Trott 2004).
satisfies the amazing equalities
![]() |
(21) |
![]() |
(22) |
where is a q-Pochhammer symbol. It also satisfies
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
(Watson 1929ab; Berndt 1991, pp. 265-267; Berndt et al. 1996, 2000; Son 1998).
Defining
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
these quantities satisfy the modular equations
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
![]() |
![]() |
![]() |
(31) |
![]() |
![]() |
![]() |
(32) |
![]() |
![]() |
![]() |
(33) |
![]() |
![]() |
![]() |
(34) |
![]() |
![]() |
![]() |
(35) |
![]() |
![]() |
![]() |
(36) |
(Berndt et al. 1996, 2000). Trott (2004) gives modular equations of orders 2 to 15 and the primes 17, 19, and 23.
As discussed by Hardy (Ramanujan 1962, pp. xxvii and xxviii), Berndt and Rankin (1995), and Berndt et al. (1996, 2000), Ramanujan also defined the generalized continued fraction
![]() |
(37) |
Ramanujan also considered the continued fraction
![]() |
![]() |
![]() |
(38) |
![]() |
![]() |
![]() |
(39) |
(Berndt 1991, p. 30; Berndt et al. 1996, 2000), of which the special case is plotted above.
Terminating at a term gives
![]() |
(40) |
(Berndt et al. 1996, 2000).
The real roots of are 0.576149, 0.815600, 0.882493, 0.913806, 0.931949, 0.943785, 0.952125, ..., the smallest of which was found by Ramanujan (Berndt et al. ).
and its smallest positive root are related to the enumeration of coins in a fountain(Berndt 1991, Berndt et al. 1996, 2000) and the study of birth and death processes (Berndt et al. 1996, 2000; Parthasarathy et al. 1998). In general, the least positive root
of
is given as
by
![]() |
(41) |
(OEIS A050203; Berndt et al. 1996, 2000). Ramanujan gave the amazing approximations
![]() |
![]() |
![]() |
(42) |
![]() |
![]() |
![]() |
(43) |
For , these approximations give
![]() |
![]() |
![]() |
(44) |
![]() |
![]() |
![]() |
(45) |
More generally, for the broad class of defined as
,
can be evaluated in terms of the j-function
and the icosahedral equation as
![]() |
(46) |
with one of the as
(Duke 2004). As an example,
has
, so
. Substituting
into the equation, one of its factors will be a quartic with the root
.
Furthermore, the numerator and the denominator (with a constant) can be combined to form a perfect square,
![]() |
(47) |
which are in fact polynomial invariants of the icosahedral group.
REFERENCES:
Andrews, G. On the General Rogers-Ramanujan Theorem. Providence, RI: Amer. Math. Soc., 1974.
Andrews, G. E.; Berndt, B. C.; Jacobsen, L.; and Lamphere, R. L. The Continued Fractions Found in the Unorganized Portion of Ramanujan's Notebooks. Providence, RI: Amer. Math. Soc., 1992.
Bailey, D. H.; Borwein, J. M.; Kapoor, V.; and Weisstein, E. W. "Ten Problems in Experimental Mathematics." Amer. Math. Monthly 113, 481-509, 2006.
Berndt, B. C. Ramanujan's Notebooks, Part III. New York: Springer-Verlag, 1991.
Berndt, B. C. "Continued Fractions." Ch. 32 in Ramanujan's Notebooks, Part V. New York: Springer-Verlag, pp. 9-88, 1998.
Berndt, B. C. and Chan, H. H. "Some Values for the Rogers-Ramanujan Continued Fraction." Canad. J. Math. 47, 897-914, 1995.
Berndt, B. C. and Rankin, R. A. Ramanujan: Letters and Commentary. Providence, RI: Amer. Math. Soc, 1995.
Berndt, B. C.; Chan, H. H.; and Zhang, L.-C. "Explicit Evaluations of the Rogers-Ramanujan Continued Fraction." J. reine angew. Math. 480, 141-159, 1996.
Berndt, B. C.; Chan, H. H.; Huang, S.-S.; Kang, S.-Y.; Sohn, J.; and Son, S. H. "The Rogers-Ramanujan Continued Fraction." J. Comput. Appl. Math. 105, 9-24, 1999.
Berndt, B. C.; Huang, S.-S.; Sohn, J.; and Son, S. H. "Some Theorems on the Rogers-Ramanujan Continued Fraction in Ramanujan's Lost Notebook." Trans. Amer. Math. Soc. 352, 2157-2177, 2000.
Duke, W. "Continued Fractions and Modular Functions." Bull. Amer. Math. Soc. 42, 137-162, 2005.
Joyce, G. S. "Exact Results for the Activity and Isothermal Compressibility of the Hard-Hexagon Model." J. Phys. A: Math. Gen. 21, L983-L988, 1988.
Parthasarathy, P. R.; Lenin, R. B.; Schoutens, W.; and van Assche, W. "A Birth and Death Process Related to the Rogers-Ramanujan Continued Fraction." J. Math. Anal. Appl. 224, 297-315, 1998.
Ramanathan, K. G. "On Ramanujan's Continued Fraction." Acta Arith. 43, 209-226, 1984a.
Ramanathan, K. G. "On the Rogers-Ramanujan Continued Fraction." Proc. Indian Acad. Sci. (Math. Sci.) 93, 67-77, 1984b.
Ramanathan, K. G. "Ramanujan's Continued Fraction." Indian J. Pure Appl. Math. 16, 695-724, 1985.
Ramanathan, K. G. "Some Applications of Kronecker's Limit Formula." J. Indian Math. Soc. 52, 71-89, 1987.
Ramanujan, S. Notebooks (2 Volumes). Bombay, India: Tata Institute, 1957.
Ramanujan, S. Collected Papers. New York: Chelsea, 1962.
Rogers, L. J. "Second Memoir on the Expansion of Certain Infinite Products." Proc. London Math. Soc. 25, 318-343, 1894.
Rogers, L. J. "On a Type of Modular Equations." Proc. London Math. Soc. 19, 387-397, 1920.
Sills, A. V. "Finite Rogers-Ramanujan Type Identities." Electron. J. Combin. 10, No. 13, 2003.
Sloane, N. J. A. Sequences A007325/M0415, A050203, A082682, A127836, and A128915 in "The On-Line Encyclopedia of Integer Sequences."
Son, S. H. "Some Theta Function Identities Related to the Rogers-Ramanujan Continued Fraction." Proc. Amer. Math. Soc. 126, 2895-2902, 1998.
Trott, M. "Modular Equations of the Rogers-Ramanujan Continued Fraction." Mathematica J. 9,314-333, 2004.
Watson, G. N. "Theorems Stated by Ramanujan (VII): Theorems on Continued Fractions." J. London Math. Soc. 4, 39-48, 1929a.
Watson, G. N. "Theorems Stated by Ramanujan (IX): Two Continued Fractions." J. London Math. Soc. 4, 231-237, 1929b.
Yi, J. "Evaluations of the Rogers-Ramanujan Continued Fraction by Modular Equations." Acta Arith. 97, 103-127, 2001.
Yi, J. "Modular Equations for the Rogers-Ramanujan Continued Fraction and the Dedekind Eta-Function." Ramanujan J. 5, 377-384, 2002.