تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
q-Pochhammer Symbol
المؤلف:
Andrews, G. E.
المصدر:
q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., 1986a.
الجزء والصفحة:
...
29-8-2019
2458
The q-analog of the Pochhammer symbol defined by
(1) |
(Koepf 1998, p. 25). -Pochhammer symbols are frequently called q-series and, for brevity,
is often simply written
. Note that this contention has the slightly curious side-effect that the argument is not taken literally, so for example
means
, not
(cf. Andrews 1986b).
The -Pochhammer symbol
is implemented in the Wolfram Language as QPochhammer[a, q, n], with the special cases
and
represented as QPochhammer[a, q] and QPochhammer[q], respectively.
![]() |
![]() |
Letting gives the special case
, sometimes known as "the" Euler function
and defined by
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
This function is closely related to the pentagonal number theorem and other related and beautiful sum/product identities. As mentioned above, it is implemented in Mathematica as QPochhammer[q]. As can be seen in the plot above, along the real axis, reaches a maximum value
(OEIS A143440) at value
(OEIS A143441).
The general -Pochhammer symbol is given by the sum
![]() |
(4) |
where is a q-binomial coefficient (Koekoek and Swarttouw 1998, p. 11).
It is closely related to the Dedekind eta function,
![]() |
(5) |
where the half-period ratio and
is the square of the nome (Berndt 1994, p. 139). Other representations in terms of special functions include
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
where is a Jacobi theta function (and in the latter case, care must be taken with the definition of the principal value the cube root).
Asymptotic results for -Pochhammer symbols include
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
for (Watson 1936, Gordon and McIntosh 2000).
For ,
![]() |
(11) |
gives the normal Pochhammer symbol (Koekoek and Swarttouw 1998, p. 7). The
-Pochhammer symbols are also called
-shifted factorials (Koekoek and Swarttouw 1998, pp. 8-9).
The -Pochhammer symbol satisfies
![]() |
(12) |
![]() |
(13) |
![]() |
(14) |
![]() |
(15) |
![]() |
(16) |
![]() |
(17) |
(here, is a binomial coefficient so
), as well as many other identities, some of which are given by Koekoek and Swarttouw (1998, p. 9).
A generalized -Pochhammer symbol can be defined using the concise notation
![]() |
(18) |
(Gordon and McIntosh 2000).
The -bracket
![]() |
(19) |
and -binomial
![]() |
(20) |
symbols are sometimes also used when discussing -series, where
is a
-binomial coefficient.
REFERENCES:
Andrews, G. E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., 1986a.
Andrews, G. E. "The Fifth and Seventh Order Mock Theta Functions." Trans. Amer. Soc. 293, 113-134, 1986b.
Andrews, G. E. The Theory of Partitions. Cambridge, England: Cambridge University Press, 1998.
Andrews, G. E.; Askey, R.; and Roy, R. Special Functions. Cambridge, England: Cambridge University Press, 1999.
Berndt, B. C. "q-Series." Ch. 27 in Ramanujan's Notebooks, Part IV. New York:Springer-Verlag, pp. 261-286, 1994.
Berndt, B. C.; Huang, S.-S.; Sohn, J.; and Son, S. H. "Some Theorems on the Rogers-Ramanujan Continued Fraction in Ramanujan's Lost Notebook." Trans. Amer. Math. Soc. 352, 2157-2177, 2000.
Bhatnagar, G. "A Multivariable View of One-Variable q-Series." In Special Functions and Differential Equations. Proceedings of the Workshop (WSSF97) held in Madras, January 13-24, 1997) (Ed. K. S. Rao, R. Jagannathan, G. van den Berghe, and J. Van der Jeugt). New Delhi, India: Allied Pub., pp. 60-72, 1998.
Gasper, G. "Lecture Notes for an Introductory Minicourse on -Series." 25 Sep 1995. http://arxiv.org/abs/math.CA/9509223.
Gasper, G. "Elementary Derivations of Summation and Transformation Formulas for q-Series." In Fields Inst. Comm. 14 (Ed. M. E. H. Ismail et al. ), pp. 55-70, 1997.
Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, 1990.
Gosper, R. W. "Experiments and Discoveries in q-Trigonometry." In Symbolic Computation, Number Theory,Special Functions, Physics and Combinatorics. Proceedings of the Conference Held at the University of Florida, Gainesville, FL, November 11-13, 1999 (Ed. F. G. Garvan and M. E. H. Ismail). Dordrecht, Netherlands: Kluwer, pp. 79-105, 2001.
Gordon, B. and McIntosh, R. J. "Some Eighth Order Mock Theta Functions." J. London Math. Soc. 62, 321-335, 2000.
Koekoek, R. and Swarttouw, R. F. The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its -Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, p. 7, 1998.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, pp. 25 and 30, 1998.
Sloane, N. J. A. Sequences A143440 and A143441 in "The On-Line Encyclopedia of Integer Sequences."Watson, G. N. "The Final Problem: An Account of the Mock Theta Functions." J. London Math. Soc. 11, 55-80, 1936.