1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Jacobi Polynomial

المؤلف:  Abramowitz, M. and Stegun, I. A.

المصدر:  "Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover

الجزء والصفحة:  ...

4-8-2019

2113

Jacobi Polynomial

 

The Jacobi polynomials, also known as hypergeometric polynomials, occur in the study of rotation groups and in the solution to the equations of motion of the symmetric top. They are solutions to the Jacobi differential equation, and give some other special named polynomials as special cases. They are implemented in the Wolfram Language as JacobiP[nabz].

For alpha=beta=0P_n^((0,0))(x) reduces to a Legendre polynomial. The Gegenbauer polynomial

 G_n(p,q,x)=(n!Gamma(n+p))/(Gamma(2n+p))P_n^((p-q,q-1))(2x-1)

(1)

and Chebyshev polynomial of the first kind can also be viewed as special cases of the Jacobi polynomials.

Plugging

 y=sum_(nu=0)^inftya_nu(x-1)^nu

(2)

into the Jacobi differential equation gives the recurrence relation

 [gamma-nu(nu+alpha+beta+1)]a_nu-2(nu+1)(nu+alpha+1)a_(nu+1)=0

(3)

for nu=0, 1, ..., where

 gamma=n(n+alpha+beta+1).

(4)

Solving the recurrence relation gives

 P_n^((alpha,beta))(x)=((-1)^n)/(2^nn!)(1-x)^(-alpha)(1+x)^(-beta)(d^n)/(dx^n)[(1-x)^(alpha+n)(1+x)^(beta+n)]

(5)

for alpha,beta>-1. They form a complete orthogonal system in the interval [-1,1] with respect to the weighting function

 w_n(x)=(1-x)^alpha(1+x)^beta,

(6)

and are normalized according to

 P_n^((alpha,beta))(1)=(n+alpha; n),

(7)

where (n; k) is a binomial coefficient. Jacobi polynomials can also be written

 P_n^((alpha,beta))=(Gamma(2n+alpha+beta+1))/(n!Gamma(n+alpha+beta+1))G_n(alpha+beta+1,beta+1,1/2(x+1)),

(8)

where Gamma(z) is the gamma function and

 G_n(p,q,x)=(n!Gamma(n+p))/(Gamma(2n+p))P_n^((p-q,q-1))(2x-1).

(9)

Jacobi polynomials are orthogonal polynomials and satisfy

 int_(-1)^1P_m^((alpha,beta))P_n^((alpha,beta))(1-x)^alpha(1+x)^betadx 
=(2^(alpha+beta+1))/(2n+alpha+beta+1)(Gamma(n+alpha+1)Gamma(n+beta+1))/(n!Gamma(n+alpha+beta+1))delta_(mn).

(10)

The coefficient of the term x^n in P_n^((alpha,beta))(x) is given by

 A_n=(Gamma(2n+alpha+beta+1))/(2^nn!Gamma(n+alpha+beta+1)).

(11)

They satisfy the recurrence relation

 2(n+1)(n+alpha+beta+1)(2n+alpha+beta)P_(n+1)^((alpha,beta))(x) 
=[(2n+alpha+beta+1)(alpha^2-beta^2)+(2n+alpha+beta)_3x]P_n^((alpha,beta))(x)-2(n+alpha)(n+beta)(2n+alpha+beta+2)P_(n-1)^((alpha,beta))(x),

(12)

where (m)_n is a Pochhammer symbol

 (m)_n=m(m+1)...(m+n-1)=((m+n-1)!)/((m-1)!).

(13)

The derivative is given by

 d/(dx)[P_n^((alpha,beta))(x)]=1/2(n+alpha+beta+1)P_(n-1)^((alpha+1,beta+1))(x).

(14)

The orthogonal polynomials with weighting function (b-x)^alpha(x-a)^beta on the closed interval [a,b] can be expressed in the form

 [const]P_n^((alpha,beta))(2(x-a)/(b-a)-1)

(15)

(Szegö 1975, p. 58).

Special cases with alpha=beta are

P_(2nu)^((alpha,alpha))(x) = (Gamma(2nu+alpha+1)Gamma(nu+1))/(Gamma(nu+alpha+1)Gamma(2nu+1))P_nu^((alpha,-1/2))(2x^2-1)

(16)

= (-1)^nu(Gamma(2nu+alpha+1)Gamma(nu+1))/(Gamma(nu+alpha+1)Gamma(2nu+1))P_nu^((-1/2,alpha))(1-2x^2)

(17)

P_(2nu+1)^((alpha,alpha))(x) = (Gamma(2nu+alpha+2)Gamma(nu+1))/(Gamma(nu+alpha+1)Gamma(2nu+2))xP_nu^((alpha,1/2))(2x^2-1)

(18)

= (-1)^nu(Gamma(2nu+alpha+2)Gamma(nu+1))/(Gamma(nu+alpha+1)Gamma(2nu+2))xP_nu^((1/2,alpha))(1-2x^2).

(19)

Further identities are

P_n^((alpha+1,beta))(x) = 2/(2n+alpha+beta+2)((n+alpha+1)P_n^((alpha,beta))-(n+1)P_(n+1)^((alpha,beta))(x))/(1-x)

(20)

P_n^((alpha,beta+1))(x) = 2/(2n+alpha+beta+2)((n+beta+1)P_n^((alpha,beta))(x)+(n+1)P_(n+1)^((alpha,beta))(x))/(1+x)

(21)

 sum_(nu=0)^n(2nu+alpha+beta+1)/(2^(alpha+beta+1))(Gamma(nu+1)Gamma(nu+alpha+beta+1))/(Gamma(nu+alpha+1)Gamma(nu+beta+1))P_nu^((alpha,beta))(x)Q_nu^((alpha,beta))(y) 
=1/2((y-1)^(-alpha)(y+1)^(-beta))/(y-x)+(2^(-alpha-beta))/(2n+alpha+beta+2)(Gamma(n+2)Gamma(n+alpha+beta+2))/(Gamma(n+alpha+1)Gamma(n+beta+1))(P_(n+1)^((alpha,beta))(x)Q_n^((alpha,beta))(y)-P_n^((alpha,beta))(x)Q_(n+1)^(alpha,beta)(y))/(x-y)

(22)

(Szegö 1975, p. 79).

The kernel polynomial is

 K_n^((alpha,beta))(x,y)=(2^(-alpha-beta))/(2n+alpha+beta+2)(Gamma(n+2)Gamma(n+alpha+beta+2))/(Gamma(n+alpha+1)Gamma(n+beta+1))(P_(n+1)^((alpha,beta))(x)P_n^((alpha,beta))(y)-P_n^((alpha,beta))(x)P_(n+1)^((alpha,beta))(y))/(x-y)

(23)

(Szegö 1975, p. 71).

The polynomial discriminant is

 D_n^((alpha,beta))=2^(-n(n-1))product_(nu=1)^nnu^(nu-2n+2)(nu+alpha)^(nu-1)(nu+beta)^(nu-1) 
 ×(n+nu+alpha+beta)^(n-nu)

(24)

(Szegö 1975, p. 143).

In terms of the hypergeometric function,

P_n^((alpha,beta))(x) = (n+alpha; n)_2F_1(-n,n+alpha+beta+1;alpha+1;1/2(1-x))

(25)

= ((alpha+1)_n)/(n!)_2F_1(-n,n+alpha+beta+1;alpha+1;1/2(1-x))

(26)

= (n+alpha; n)((x+1)/2)^n_2F_1(-n,-n-beta;alpha+1;(x-1)/(x+1)),

(27)

where (alpha)_n is the Pochhammer symbol (Abramowitz and Stegun 1972, p. 561; Koekoek and Swarttouw 1998).

Let N_1 be the number of zeros in x in (-1,1)N_2 the number of zeros in x in (-infty,-1), and N_3 the number of zeros in x in (1,infty). Define Klein's symbol

 E(u)=<span style={0 if u<=0; |_u_| if u positive and nonintegral; u-1 if u=1, 2, ..., " src="http://mathworld.wolfram.com/images/equations/JacobiPolynomial/NumberedEquation19.gif" style="height:62px; width:258px" />

(28)

where |_x_| is the floor function, and

X(alpha,beta) = E[1/2(|2n+alpha+beta+1|-|alpha|-|beta|+1)]

(29)

Y(alpha,beta) = E[1/2(-|2n+alpha+beta+1|+|alpha|-|beta|+1)]

(30)

Z(alpha,beta) = E[1/2(-|2n+alpha+beta+1|-|alpha|+|beta|+1)].

(31)

If the cases alpha=-1-2, ..., -nbeta=-1-2, ..., -n, and n+alpha+beta=-1-2, ..., -n are excluded, then the number of zeros of P_n^((alpha,beta)) in the respective intervals are

N_1(alpha,beta) = <span style={2|_1/2(X+1)_| for (-1)^n(n+alpha; n)(n+beta; n)>0; 2|_1/2X_|+1 for (-1)^n(n+alpha; n)(n+beta; n)<0" src="http://mathworld.wolfram.com/images/equations/JacobiPolynomial/Inline70.gif" style="height:86px; width:265px" />

(32)

N_2(alpha,beta) = <span style={2|_1/2(Y+1)_| for (2n+alpha+beta; n)(n+beta; n)>0; 2|_1/2Y_|+1 for (2n+alpha+beta; n)(n+beta; n)<0" src="http://mathworld.wolfram.com/images/equations/JacobiPolynomial/Inline73.gif" style="height:86px; width:265px" />

(33)

N_3(alpha,beta) = <span style={2|_1/2(Z+1)_| for (2n+alpha+beta; n)(n+alpha; n)>0; 2|_1/2Z_|+1 for (2n+alpha+beta; n)(n+alpha; n)<0" src="http://mathworld.wolfram.com/images/equations/JacobiPolynomial/Inline76.gif" style="height:86px; width:263px" />

(34)

(Szegö 1975, pp. 144-146), where |_x_| is again the floor function.

The first few polynomials are

P_0^((alpha,beta))(x) = 1

(35)

P_1^((alpha,beta))(x) = 1/2[2(alpha+1)+(alpha+beta+2)(x-1)]

(36)

P_2^((alpha,beta))(x) = 1/8[4(alpha+1)(alpha+2)+4(alpha+beta+3)(alpha+2)(x-1)+(alpha+beta+3)(alpha+beta+4)(x-1)^2]

(37)

(Abramowitz and Stegun 1972, p. 793).

See Abramowitz and Stegun (1972, pp. 782-793) and Szegö (1975, Ch. 4) for additional identities.


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). "Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 771-802, 1972.

Andrews, G. E.; Askey, R.; and Roy, R. "Jacobi Polynomials and Gram Determinants" and "Generating Functions for Jacobi Polynomials." §6.3 and 6.4 in Special Functions. Cambridge, England: Cambridge University Press, pp. 293-306, 1999.

Iyanaga, S. and Kawada, Y. (Eds.). "Jacobi Polynomials." Appendix A, Table 20.V in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1480, 1980.

Koekoek, R. and Swarttouw, R. F. "Jacobi." §1.8 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 38-44, 1998.

Roman, S. "The Theory of the Umbral Calculus I." J. Math. Anal. Appl. 87, 58-115, 1982.

Szegö, G. "Jacobi Polynomials." Ch. 4 in Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., 1975.

EN

تصفح الموقع بالشكل العمودي