تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Jacobi Polynomial
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
"Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
4-8-2019
2113
The Jacobi polynomials, also known as hypergeometric polynomials, occur in the study of rotation groups and in the solution to the equations of motion of the symmetric top. They are solutions to the Jacobi differential equation, and give some other special named polynomials as special cases. They are implemented in the Wolfram Language as JacobiP[n, a, b, z].
For ,
reduces to a Legendre polynomial. The Gegenbauer polynomial
![]() |
(1) |
and Chebyshev polynomial of the first kind can also be viewed as special cases of the Jacobi polynomials.
Plugging
![]() |
(2) |
into the Jacobi differential equation gives the recurrence relation
![]() |
(3) |
for , 1, ..., where
![]() |
(4) |
Solving the recurrence relation gives
![]() |
(5) |
for . They form a complete orthogonal system in the interval
with respect to the weighting function
![]() |
(6) |
and are normalized according to
![]() |
(7) |
where is a binomial coefficient. Jacobi polynomials can also be written
![]() |
(8) |
where is the gamma function and
![]() |
(9) |
Jacobi polynomials are orthogonal polynomials and satisfy
![]() |
(10) |
The coefficient of the term in
is given by
![]() |
(11) |
They satisfy the recurrence relation
![]() |
(12) |
where is a Pochhammer symbol
![]() |
(13) |
The derivative is given by
![]() |
(14) |
The orthogonal polynomials with weighting function on the closed interval
can be expressed in the form
![]() |
(15) |
(Szegö 1975, p. 58).
Special cases with are
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
Further identities are
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
![]() |
(22) |
(Szegö 1975, p. 79).
The kernel polynomial is
![]() |
(23) |
(Szegö 1975, p. 71).
The polynomial discriminant is
![]() |
(24) |
(Szegö 1975, p. 143).
In terms of the hypergeometric function,
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
where is the Pochhammer symbol (Abramowitz and Stegun 1972, p. 561; Koekoek and Swarttouw 1998).
Let be the number of zeros in
,
the number of zeros in
, and
the number of zeros in
. Define Klein's symbol
(28) |
where is the floor function, and
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
![]() |
![]() |
![]() |
(31) |
If the cases ,
, ...,
,
,
, ...,
, and
,
, ...,
are excluded, then the number of zeros of
in the respective intervals are
![]() |
![]() |
(32) |
|
![]() |
![]() |
(33) |
|
![]() |
![]() |
(34) |
(Szegö 1975, pp. 144-146), where is again the floor function.
The first few polynomials are
![]() |
![]() |
![]() |
(35) |
![]() |
![]() |
![]() |
(36) |
![]() |
![]() |
![]() |
(37) |
(Abramowitz and Stegun 1972, p. 793).
See Abramowitz and Stegun (1972, pp. 782-793) and Szegö (1975, Ch. 4) for additional identities.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 771-802, 1972.
Andrews, G. E.; Askey, R.; and Roy, R. "Jacobi Polynomials and Gram Determinants" and "Generating Functions for Jacobi Polynomials." §6.3 and 6.4 in Special Functions. Cambridge, England: Cambridge University Press, pp. 293-306, 1999.
Iyanaga, S. and Kawada, Y. (Eds.). "Jacobi Polynomials." Appendix A, Table 20.V in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1480, 1980.
Koekoek, R. and Swarttouw, R. F. "Jacobi." §1.8 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its -Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 38-44, 1998.
Roman, S. "The Theory of the Umbral Calculus I." J. Math. Anal. Appl. 87, 58-115, 1982.
Szegö, G. "Jacobi Polynomials." Ch. 4 in Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., 1975.