تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Chebyshev Polynomial of the Second Kind
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
"Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
3-8-2019
3880
A modified set of Chebyshev polynomials defined by a slightly different generating function. They arise in the development of four-dimensional spherical harmonics in angular momentum theory. They are a special case of the Gegenbauer polynomial with . They are also intimately connected with trigonometric multiple-angle formulas. The Chebyshev polynomials of the second kind are denoted
, and implemented in the Wolfram Language as ChebyshevU[n, x]. The polynomials
are illustrated above for
and
, 2, ..., 5.
The first few Chebyshev polynomials of the second kind are
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1; 2; , 4;
, 8; 1,
, 16; 6,
, 32; ... (OEIS A053117).
The defining generating function of the Chebyshev polynomials of the second kind is
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
for and
. To see the relationship to a Chebyshev polynomial of the first kind
, take
of equation (9) to obtain
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
Multiplying (◇) by then gives
![]() |
(12) |
and adding (12) and (◇) gives
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
This is the same generating function as for the Chebyshev polynomial of the first kind except for an additional factor of in the denominator.
The Rodrigues representation for is
![]() |
(15) |
The polynomials can also be defined in terms of the sums
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
where is the floor function and
is the ceiling function, or in terms of the product
![]() |
(18) |
(Zwillinger 1995, p. 696).
also obey the interesting determinant identity
![]() |
(19) |
The Chebyshev polynomials of the second kind are a special case of the Jacobi polynomials with
,
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
where is a hypergeometric function (Koekoek and Swarttouw 1998).
Letting allows the Chebyshev polynomials of the second kind to be written as
![]() |
(22) |
The second linearly dependent solution to the transformed differential equation is then given by
![]() |
(23) |
which can also be written
![]() |
(24) |
where is a Chebyshev polynomial of the first kind. Note that
is therefore not a polynomial.
The triangle of resultants is given by
{0}" src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheSecondKind/Inline78.gif" style="height:14px; width:17px" />,
{-4,0}" src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheSecondKind/Inline79.gif" style="height:14px; width:42px" />,
{0,-64,0}" src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheSecondKind/Inline80.gif" style="height:14px; width:64px" />,
{16,256,4096,0}" src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheSecondKind/Inline81.gif" style="height:14px; width:104px" />,
{0,0,0,1048576,0}" src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheSecondKind/Inline82.gif" style="height:14px; width:123px" />, ... (OEIS A054376).
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 771-802, 1972.
Arfken, G. "Chebyshev (Tschebyscheff) Polynomials" and "Chebyshev Polynomials--Numerical Applications." §13.3 and 13.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 731-748, 1985.
Koekoek, R. and Swarttouw, R. F. "Chebyshev." §1.8.2 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its -Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 41-43, 1998.
Koepf, W. "Efficient Computation of Chebyshev Polynomials." In Computer Algebra Systems: A Practical Guide (Ed. M. J. Wester). New York: Wiley, pp. 79-99, 1999.
Pegg, E. Jr. "ChebyshevU." http://www.mathpuzzle.com/ChebyshevU.html.
Rivlin, T. J. Chebyshev Polynomials. New York: Wiley, 1990.
Sloane, N. J. A. Sequences A053117 and A054376 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "The Chebyshev Polynomials and
." Ch. 22 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 193-207, 1987.
Vasilyev, N. and Zelevinsky, A. "A Chebyshev Polyplayground: Recurrence Relations Applied to a Famous Set of Formulas." Quantum 10, 20-26, Sept./Oct. 1999.
Zwillinger, D. (Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, 1995.