1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Chebyshev Polynomial of the First Kind

المؤلف:  Abramowitz, M. and Stegun, I. A.

المصدر:  "Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover

الجزء والصفحة:  ...

3-8-2019

4340

Chebyshev Polynomial of the First Kind

ChebyshevT

The Chebyshev polynomials of the first kind are a set of orthogonal polynomials defined as the solutions to the Chebyshev differential equation and denoted T_n(x). They are used as an approximation to a least squares fit, and are a special case of the Gegenbauer polynomial with alpha=0. They are also intimately connected with trigonometric multiple-angle formulas. The Chebyshev polynomials of the first kind are denoted T_n(x), and are implemented in the Wolfram Language as ChebyshevT[nx]. They are normalized such that T_n(1)=1. The first few polynomials are illustrated above for x in [-1,1] and n=1, 2, ..., 5.

The Chebyshev polynomial of the first kind T_n(z) can be defined by the contour integral

 T_n(z)=1/(4pii)∮((1-t^2)t^(-n-1))/((1-2tz+t^2))dt,

(1)

where the contour encloses the origin and is traversed in a counterclockwise direction (Arfken 1985, p. 416).

The first few Chebyshev polynomials of the first kind are

T_0(x) = 1

(2)

T_1(x) = x

(3)

T_2(x) = 2x^2-1

(4)

T_3(x) = 4x^3-3x

(5)

T_4(x) = 8x^4-8x^2+1

(6)

T_5(x) = 16x^5-20x^3+5x

(7)

T_6(x) = 32x^6-48x^4+18x^2-1.

(8)

When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1; 1; -1, 2; -3, 4; 1, -8, 8; 5, -20, 16, ... (OEIS A008310).

ChebyshevTSpiral

A beautiful plot can be obtained by plotting T_n(x) radially, increasing the radius for each value of n, and filling in the areas between the curves (Trott 1999, pp. 10 and 84).

The Chebyshev polynomials of the first kind are defined through the identity

 T_n(costheta)=cos(ntheta).

(9)

The Chebyshev polynomials of the first kind can be obtained from the generating functions

g_1(t,x) = (1-t^2)/(1-2xt+t^2)

(10)

= T_0(x)+2sum_(n=1)^(infty)T_n(x)t^n

(11)

and

g_2(t,x) = (1-xt)/(1-2xt+t^2)

(12)

= sum_(n=0)^(infty)T_n(x)t^n

(13)

for |x|<=1 and |t|<1 (Beeler et al. 1972, Item 15). (A closely related generating function is the basis for the definition of Chebyshev polynomial of the second kind.)

A direct representation is given by

 T_n(z)=1/2z^2[(sqrt(1-1/(z^2))+1)^n+(sqrt(1-1/(z^2)))^n].

(14)

The polynomials can also be defined in terms of the sums

T_n(x) = n/2sum_(r=0)^(|_n/2_|)((-1)^r)/(n-r)(n-r; r)(2x)^(n-2r)

(15)

= cos(ncos^(-1)x)

(16)

= sum_(m=0)^(|_n/2_|)(n; 2m)x^(n-2m)(x^2-1)^m,

(17)

where (n; k) is a binomial coefficient and |_x_| is the floor function, or the product

 T_n(x)=2^(n-1)product_(k=1)^n<span style={x-cos[((2k-1)pi)/(2n)]} " src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheFirstKind/NumberedEquation4.gif" style="height:45px; width:227px" />

(18)

(Zwillinger 1995, p. 696).

T_n also satisfy the curious determinant equation

 T_n=|x 1 0 0 ... 0 0; 1 2x 1 0 ... 0 0; 0 1 2x 1 ... 0 0; 0 0 1 2x ... 0 0; 0 0 0 1 ... 1 0; | ... ... ... ... ... 1; 0 0 0 0 ... 1 2x|

(19)

(Nash 1986).

The Chebyshev polynomials of the first kind are a special case of the Jacobi polynomials P_n^((alpha,beta)) with alpha=beta=-1/2,

T_n(x) = (P_n^((-1/2,-1/2))(x))/(P_n^((-1/2,-1/2))(1))

(20)

= _2F_1(-n,n;1/2;1/2(1-x)),

(21)

where _2F_1(a,b;c;x) is a hypergeometric function (Koekoek and Swarttouw 1998).

Zeros occur when

 x=cos[(pi(k-1/2))/n]

(22)

for k=1, 2, ..., n. Extrema occur for

 x=cos((pik)/n),

(23)

where k=0,1,...,n. At maximum, T_n(x)=1, and at minimum, T_n(x)=-1.

The Chebyshev polynomials are orthogonal polynomials with respect to the weighting function (1-x^2)^(-1/2)

 int_(-1)^1(T_m(x)T_n(x)dx)/(sqrt(1-x^2))=<span style={1/2pidelta_(nm) for m!=0, n!=0; pi for m=n=0, " src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheFirstKind/NumberedEquation8.gif" style="height:53px; width:288px" />

(24)

where delta_(mn) is the Kronecker delta. Chebyshev polynomials of the first kind satisfy the additional discrete identity

 sum_(k=1)^mT_i(x_k)T_j(x_k)=<span style={1/2mdelta_(ij) for i!=0, j!=0; m for i=j=0, " src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheFirstKind/NumberedEquation9.gif" style="height:48px; width:264px" />

(25)

where x_k for k=1, ..., m are the m zeros of T_m(x).

They also satisfy the recurrence relations

T_(n+1)(x) = 2xT_n(x)-T_(n-1)(x)

(26)

T_(n+1)(x) = xT_n(x)-sqrt((1-x^2)<span style={1-[T_n(x)]^2})" src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheFirstKind/Inline87.gif" style="height:26px; width:201px" />

(27)

for n>=1, as well as

(x-1)[T_(2n+1)(x)-1] = [T_(n+1)(x)-T_n(x)]^2

(28)

2(x^2-1)[T_(2n)(x)-1] = [T_(n+1)(x)-T_(n-1)(x)]^2

(29)

(Watkins and Zeitlin 1993; Rivlin 1990, p. 5).

They have a complex integral representation

 T_n(x)=1/(4pii)int_gamma((1-z^2)z^(-n-1)dz)/(1-2xz+z^2)

(30)

and a Rodrigues representation

 T_n(x)=((-1)^nsqrt(pi)(1-x^2)^(1/2))/(2^n(n-1/2)!)(d^n)/(dx^n)[(1-x^2)^(n-1/2)].

(31)

Using a fast Fibonacci transform with multiplication law

 (A,B)(C,D)=(AD+BC+2xAC,BD-AC)

(32)

gives

 (T_(n+1)(x),-T_n(x))=(T_1(x),-T_0(x))(1,0)^n.

(33)

Using Gram-Schmidt orthonormalization in the range (-1,1) with weighting function (1-x^2)^((-1/2)) gives

p_0(x) = 1

(34)

p_1(x) = [x-(int_(-1)^1x(1-x^2)^(-1/2)dx)/(int_(-1)^1(1-x^2)^(-1/2)dx)]

(35)

= x-([-(1-x^2)^(1/2)]_(-1)^1)/([sin^(-1)x]_(-1)^1)

(36)

= x

(37)

p_2(x) = [x-(int_(-1)^1x^3(1-x^2)^(-1/2)dx)/(int_(-1)^1x^2(1-x^2)^(-1/2)dx)]x-[(int_(-1)^1x^2(1-x^2)^(-1/2)dx)/(int_(-1)^1(1-x^2)^(-1/2)dx)]·1

(38)

= [x-0]x-(pi/2)/pi

(39)

= x^2-1/2,

(40)

etc. Normalizing such that T_n(1)=1 gives the Chebyshev polynomials of the first kind.

The Chebyshev polynomial of the first kind is related to the Bessel function of the first kind J_n(x) and modified Bessel function of the first kind I_n(x) by the relations

 J_n(x)=i^nT_n(id/(dx))J_0(x)

(41)

 I_n(x)=T_n(d/(dx))I_0(x).

(42)

Letting x=costheta allows the Chebyshev polynomials of the first kind to be written as

T_n(x) = cos(ntheta)

(43)

= cos(ncos^(-1)x).

(44)

The second linearly dependent solution to the transformed differential equation

 (d^2T_n)/(dtheta^2)+n^2T_n=0

(45)

is then given by

V_n(x) = sin(ntheta)

(46)

= sin(ncos^(-1)x),

(47)

which can also be written

 V_n(x)=sqrt(1-x^2)U_(n-1)(x),

(48)

where U_n is a Chebyshev polynomial of the second kind. Note that V_n(x) is therefore not a polynomial.

The triangle of resultants rho(T_n(x),T_k(x)) is given by <span style={0}" src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheFirstKind/Inline137.gif" style="height:14px; width:17px" />, <span style={-1,0}" src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheFirstKind/Inline138.gif" style="height:14px; width:42px" />, <span style={0,-4,0}" src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheFirstKind/Inline139.gif" style="height:14px; width:57px" />, <span style={1,16,64,0}" src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheFirstKind/Inline140.gif" style="height:14px; width:76px" />, <span style={0,-16,0,4096,0}" src="http://mathworld.wolfram.com/images/equations/ChebyshevPolynomialoftheFirstKind/Inline141.gif" style="height:14px; width:115px" />, ... (OEIS A054375).

ChebyshevTPowers

The polynomials

 p_n(x)=x^n-2^(1-n)T_n(x)

(49)

of degree n-2, the first few of which are

p_1(x) = 0

(50)

p_2(x) = 1/2

(51)

p_3(x) = 3/4x

(52)

p_4(x) = x^2-1/8

(53)

p_5(x) = 5/(16)(4x^3-x)

(54)

are the polynomials of degree <n which stay closest to x^n in the interval (-1,1). The maximum deviation is 2^(1-n) at the n+1 points where

 x=cos((kpi)/n),

(55)

for k=0, 1, ..., n (Beeler et al. 1972).


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). "Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 771-802, 1972.

Arfken, G. "Chebyshev (Tschebyscheff) Polynomials" and "Chebyshev Polynomials--Numerical Applications." §13.3 and 13.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 731-748, 1985.

Beeler et al. Item 15 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 9, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/recurrence.html#item15.

Iyanaga, S. and Kawada, Y. (Eds.). "Čebyšev (Tschebyscheff) Polynomials." Appendix A, Table 20.II in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1478-1479, 1980.

Koekoek, R. and Swarttouw, R. F. "Chebyshev." §1.8.2 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 41-43, 1998.

Koepf, W. "Efficient Computation of Chebyshev Polynomials." In Computer Algebra Systems: A Practical Guide (Ed. M. J. Wester). New York: Wiley, pp. 79-99, 1999.

Nash, P. L. "Chebyshev Polynomials and Quadratic Path Integrals." J. Math. Phys. 27, 2963, 1986.

Rivlin, T. J. Chebyshev Polynomials. New York: Wiley, 1990.

Shohat, J. Théorie générale des polynomes orthogonaux de Tchebichef. Paris: Gauthier-Villars, 1934.

Sloane, N. J. A. Sequences A008310 and A054375 in "The On-Line Encyclopedia of Integer Sequences."

Spanier, J. and Oldham, K. B. "The Chebyshev Polynomials T_n(x) and U_n(x)." Ch. 22 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 193-207, 1987.

Trott, M. Graphica 1: The World of Mathematica Graphics. The Imaginary Made Real: The Images of Michael Trott. Champaign, IL: Wolfram Media, pp. 10 and 84, 1999.

Vasilyev, N. and Zelevinsky, A. "A Chebyshev Polyplayground: Recurrence Relations Applied to a Famous Set of Formulas." Quantum 10, 20-26, Sept./Oct. 1999.

Watkins, W. and Zeitlin, J. "The Minimal Polynomial of cos(2pi/n)." Amer. Math. Monthly 100, 471-474, 1993.

Zwillinger, D. (Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, 1995.

EN

تصفح الموقع بالشكل العمودي