تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Mean
المؤلف:
المرجع الالكتروني للمعلوماتيه
المصدر:
المرجع الالكتروني للمعلوماتيه
الجزء والصفحة:
...
30-6-2019
1775
There are several statistical quantities called means, e.g., harmonic mean, geometric mean, arithmetic-geometric mean, and root-mean-square. When applied to two elements and
with
, these means satisfy
![]() |
(1) |
The following table summarizes these means (again applied to two elements and
with
), where
is a complete elliptic integral of the first kind.
mean | value |
harmonic mean | ![]() |
geometric mean | ![]() |
arithmetic-geometric mean | ![]() |
arithmetic mean | ![]() |
root-mean-square | ![]() |
The quantity commonly referred to as "the" mean of a set of values is the arithmetic mean
![]() |
(2) |
also called the (unweighted) average. Notations for "the" mean of a set {x_i}" src="http://mathworld.wolfram.com/images/equations/Mean/Inline13.gif" style="height:14px; width:21px" /> of
values include macron notation
or
. The expectation value notation
is sometimes also used. The mean of a list of data (i.e., the sample mean) is implemented as Mean[list].
In general, a mean is a homogeneous function that has the property that a mean of a set of numbers
satisfies
![]() |
(3) |
The term function centroid is sometimes used to refer to an analogous quantity for a function that is not necessarily a probability density function.
Central moments are moments taken about the population mean, i.e.,
![]() |
(4) |
A joke told about the mean runs as follows. Two statisticians are out hunting when one of them sees a duck. The first takes aim and shoots, but the bullet goes sailing past six inches too high. The second statistician also takes aim and shoots, but this time the bullet goes sailing past six inches too low. The two statisticians then give one another high fives and exclaim, "Got him!" (This joke plays on the fact that the mean of and 6 is 0, so "on average," the two shots hit the duck.)