تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Arithmetic Mean
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
26-6-2019
1896
The arithmetic mean of a set of values is the quantity commonly called "the" mean or the average. Given a set of samples {x_i}" src="http://mathworld.wolfram.com/images/equations/ArithmeticMean/Inline1.gif" style="height:15px; width:21px" />, the arithmetic mean is
![]() |
(1) |
It can be computed in the Wolfram Language using Mean[list].
The arithmetic mean is the special case of the power mean and is one of the Pythagorean means.
When viewed as an estimator for the mean of the underlying distribution (known as the population mean), the arithmetic mean of a sample is called the sample mean.
For a continuous distribution function, the arithmetic mean of the population, denoted ,
,
, or
and called the population mean of the distribution, is given by
![]() |
(2) |
where is the expectation value. Similarly, for a discrete distribution,
![]() |
(3) |
The arithmetic mean satisfies
![]() |
(4) |
![]() |
(5) |
and
![]() |
(6) |
if and
are independent statistics. The "sample mean," which is the mean estimated from a statistical sample, is an unbiased estimator for the population mean.
Hoehn and Niven (1985) show that
![]() |
(7) |
for any constant . For positive arguments, the arithmetic mean satisfies
![]() |
(8) |
where is the geometric mean and
is the harmonic mean (Hardy et al. 1952, Mitrinović 1970, Beckenbach and Bellman 1983, Bullen et al. 1988, Mitrinović et al. 1993, Alzer 1996). This can be shown as follows. For
,
![]() |
(9) |
![]() |
(10) |
![]() |
(11) |
![]() |
(12) |
![]() |
(13) |
with equality iff . To show the second part of the inequality,
![]() |
(14) |
![]() |
(15) |
![]() |
(16) |
with equality iff . Combining (◇) and (◇) then gives (◇).
Given independent random normally distributed variates
, each with population mean
and variance
,
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
so the sample mean is an unbiased estimator of the population mean. However, the distribution of depends on the sample size. For large samples,
is approximately normal. For small samples, Student's t-distribution should be used.
The variance of the sample mean is independent of the distribution, and is given by
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
For small samples, the sample mean is a more efficient estimator of the population mean than the statistical median, and approximately less (Kenney and Keeping 1962, p. 211). Here, an estimator of a parameter of a probability distribution is said to be more efficient than another one if it has a smaller variance. In this case, the variance of the sample mean is generally less than the variance of the sample median. The relative efficiency of two estimators is the ratio of this variance.
A general expression that often holds approximately is
![]() |
(28) |
(Kenney and Keeping 1962).
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 10, 1972.
Alzer, H. "A Proof of the Arithmetic Mean-Geometric Mean Inequality." Amer. Math. Monthly 103, 585, 1996.
Beckenbach, E. F. and Bellman, R. Inequalities. New York: Springer-Verlag, 1983.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 471, 1987.
Bullen, P. S.; Mitrinović, D. S.; and Vasić, P. M. Means and Their Inequalities. Dordrecht, Netherlands: Reidel, 1988.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 119-121, 2003.
Hardy, G. H.; Littlewood, J. E.; and Pólya, G. Inequalities. Cambridge, England: Cambridge University Press, 1952.
Hoehn, L. and Niven, I. "Averages on the Move." Math. Mag. 58, 151-156, 1985.
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, 1962.
Mitrinović, D. S. Analytic Inequalities. New York: Springer-Verlag, 1970.
Mitrinović, D. S.; Pečarić, J. E.; and Fink, A. M. Classical and New Inequalities in Analysis. Dordrecht, Netherlands: Kluwer, 1993.
Zwillinger, D. (Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, p. 601, 1995.