تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Arithmetic-Geometric Mean
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
"The Process of the Arithmetic-Geometric Mean." §17.6 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
26-6-2019
2645
The arithmetic-geometric mean of two numbers
and
(often also written
or
) is defined by starting with
and
, then iterating
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
until to the desired precision.
and
converge towards each other since
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
But , so
![]() |
(5) |
Now, add to each side
![]() |
(6) |
so
![]() |
(7) |
![]() |
![]() |
The top plots show for
and
for
, while the bottom two plots show
for complex values of
.
The AGM is very useful in computing the values of complete elliptic integrals and can also be used for finding the inverse tangent.
It is implemented in the Wolfram Language as ArithmeticGeometricMean[a, b].
can be expressed in closed form in terms of the complete elliptic integral of the first kind
as
![]() |
(8) |
The definition of the arithmetic-geometric mean also holds in the complex plane, as illustrated above for .
The Legendre form of the arithmetic-geometric mean is given by
![]() |
(9) |
where and
![]() |
(10) |
Special values of are summarized in the following table. The special value
![]() |
(11) |
(OEIS A014549) is called Gauss's constant. It has the closed form
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
where the above integral is the lemniscate function and the equality of the arithmetic-geometric mean to this integral was known to Gauss (Borwein and Bailey 2003, pp. 13-15).
![]() |
Sloane | value |
![]() |
A068521 | 1.4567910310469068692... |
![]() |
A084895 | 1.8636167832448965424... |
![]() |
A084896 | 2.2430285802876025701... |
![]() |
A084897 | 2.6040081905309402887... |
The derivative of the AGM is given by
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
where ,
is a complete elliptic integral of the first kind, and
is the complete elliptic integral of the second kind.
A series expansion for is given by
![]() |
(16) |
The AGM has the properties
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
Solutions to the differential equation
![]() |
(21) |
are given by and
.
A generalization of the arithmetic-geometric mean is
![]() |
(22) |
which is related to solutions of the differential equation
![]() |
(23) |
The case corresponds to the arithmetic-geometric mean via
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
The case gives the cubic relative
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
discussed by Borwein and Borwein (1990, 1991) and Borwein (1996). For , this function satisfies the functional equation
![]() |
(28) |
It therefore turns out that for iteration with and
and
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
so
![]() |
(31) |
where
![]() |
(32) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "The Process of the Arithmetic-Geometric Mean." §17.6 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 571 and 598-599, 1972.
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.
Borwein, J. M. Problem 10281. "A Cubic Relative of the AGM." Amer. Math. Monthly 103, 181-183, 1996.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.
Borwein, J. M. and Borwein, P. B. "A Remarkable Cubic Iteration." In Computational Method & Function Theory: Proc. Conference Held in Valparaiso, Chile, March 13-18, 1989 (Ed. A. Dold, B. Eckmann, F. Takens, E. B. Saff, S. Ruscheweyh, L. C. Salinas, and R. S. Varga). New York: Springer-Verlag, 1990.
Borwein, J. M. and Borwein, P. B. "A Cubic Counterpart of Jacobi's Identity and the AGM." Trans. Amer. Math. Soc. 323, 691-701, 1991.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 906-907, 1992.
Sloane, N. J. A. Sequences A014549, A068521, A084895, A084896, and A084897 in "The On-Line Encyclopedia of Integer Sequences."