1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Mathieu Function

المؤلف:  Abramowitz, M. and Stegun, I. A.

المصدر:  "Mathieu Functions." Ch. 20 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover

الجزء والصفحة:  ...

26-6-2019

3086

Mathieu Function

The Mathieu functions are the solutions to the Mathieu differential equation

 (d^2V)/(dv^2)+[a-2qcos(2v)]V=0.

(1)

Even solutions are denoted C(a,q,v) and odd solutions by S(a,q,v). These are returned by the Wolfram Language functions MathieuC[aqz] and MathieuS[aqz], respectively. Similarly, their derivatives are implemented as MathieuCPrime[aqz] and MathieuSPrime[aqz].

These functions appear in physical problems involving elliptical shapes or periodic potentials, and were first introduced by Mathieu (1868) when analyzing the motion of elliptical membranes. Unfortunately, the analytic determination of Mathieu functions "presents great difficulties" (Whittaker 1914, Frenkel and Portugal 2001), and they are difficult to employ, "mainly because of the impossibility of analytically representing them in a simple and handy way" (Sips 1949, Frenkel and Portugal 2001).

The Mathieu functions have the special values

C(a,0,z) = cos(sqrt(a)z)

(2)

S(a,0,z) = sin(sqrt(a)z).

(3)

For nonzero q, the Mathieu functions are only periodic in z for certain values of a. Such characteristic values are given by the Wolfram Language functions MathieuCharacteristicA[rq] and MathieuCharacteristicB[rq] with r an integer or rational number. These values are often denoted a_r and b_r. In general, both a_r and b_r are multivalued functions with very complicated branch cut structures. Unfortunately, there is no general agreement on how to define the branch cuts. As a result, the Wolfram Language's implementation simply picks a convenient sheet.

MathieuA MathieuB

For integer r, the even and odd Mathieu functions with characteristic values a_r and b_r are often denoted ce_r(z,q) and se_r(z,q), known as the elliptic cosine and elliptic sine functions, respectively (Abramowitz and Stegun 1972, p. 725; Frenkel and Portugal 2001). The left plot above shows a_r for r=0, 1, ..., 4 and the right plot shows b_r for r=1, ..., 4.

Whittaker and Watson (1990, p. 405) define the Mathieu function based on the equation

 (d^2u)/(dz^2)+[a+16qcos(2z)]u=0.

(4)

This equation is closely related to Hill's differential equation. For an even Mathieu function,

 G(eta)=lambdaint_(-pi)^pie^(kcosetacostheta)G(theta)dtheta,

(5)

where k=sqrt(32q). For an odd Mathieu function,

 G(eta)=lambdaint_(-pi)^pisin(ksinetasintheta)G(theta)dtheta.

(6)

Both even and odd functions satisfy

 G(eta)=lambdaint_(-pi)^pie^(iksinetasintheta)G(theta)dtheta.

(7)

Letting zeta=cos^2z transforms the Mathieu differential equation to

 4zeta(1-zeta)(d^2u)/(dzeta^2)+2(1-2zeta)(du)/(dzeta)+(a-16q+32qzeta)u=0.

(8)

 


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). "Mathieu Functions." Ch. 20 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 721-746, 1972.

Blanch, G. "Asymptotic Expansion for the Odd Periodic Mathieu Functions." Trans. Amer. Math. Soc. 97, 357-366, 1960.

Dingle, R. B. and Müller, H. J. W. "Asymptotic Expansions of Mathieu Functions and Their Characteristic Numbers." J. reine angew. Math. 211, 11-32, 1962.

Frenkel, D. and Portugal, R. "Algebraic Methods to Compute Mathieu Functions." J. Phys. A: Math. Gen. 34, 3541-3551, 2001.

Gradshteyn, I. S. and Ryzhik, I. M. "Mathieu Functions." §6.9 and 8.6 in Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, pp. 800-804 and 1006-1013, 2000.

Humbert, P. Fonctions de Lamé et Fonctions de Mathieu. Paris: Gauthier-Villars, 1926.

Mathieu, É. "Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique." J. math. pure appl. 13, 137-203, 1868.

McLachlan, N. W. Theory and Applications of Mathieu Functions. New York: Dover, 1964.

Mechel, F. P. Mathieu Functions: Formulas, Generation, Use. Stuttgart, Germany: Hirzel, 1997.

Meixner, J. and Schäfke, F. W. Mathieusche Funktionen und Sphäroidfunktionen. Berlin: Springer-Verlag, 1954.

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 562-568 and 633-642, 1953.

Rubin, H. "Anecdote on Power Series Expansions of Mathieu Functions." J. Math. Phys. 43, 339-341, 1964.

Sips, R. "Représentation asymptotique des fonctions de Mathieu et des fonctions d'onde sphéroidales." Trans. Amer. Math. Soc. 66, 93-134, 1949.

Whittaker, E. T. "On the General Solution of Mathieu's Equation." Proc. Edinburgh Math. Soc. 32, 75-80, 1914.

Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.

EN

تصفح الموقع بالشكل العمودي