1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Whipple,s Transformation

المؤلف:  Andrews, G. E. and Burge, W. H.

المصدر:  "Determinant Identities." Pacific J. Math. 158

الجزء والصفحة:  ...

20-6-2019

1536

Whipple's Transformation
 _7F_6[a,1+1/2a,b,c,d,e,-m; 1/2a,1+a-b,1+a-c, ;  1+a-d,1+a-e,1+a+m] 
=((1+a)_m(1+a-d-e)_m)/((1+a-d)_m(1+a-e)_m)_4F_3[1+a-b-c,d,e,-m; 1+a-b,1+a-c,d+e-a-m]

(Bailey 1935, p. 25), where _7F_6(a_1,...,a_7;b_1,...,b_6) and _4F_3(a_1,...,a_4;b_1,b_2,b_3) are generalized hypergeometric functions with argument z=1 and Gamma(z) is the gamma function.

Another transformation due to Whipple (1926ab) is given by

 _4F_3[a,b,-z,-n; u,v,w;1] 
=(Gamma(u+z+n)Gamma(w+z+n)Gamma(v)Gamma(w))/(Gamma(v+z)Gamma(v+n)Gamma(w+n)Gamma(w+z))_4F_3[u-a,u-b,-z,-n; 1-v-z-n,1-w-z-n,u;1]

for one of z and n a nonnegative integer (Andrews and Burge 1993).


REFERENCES:

Andrews, G. E. and Burge, W. H. "Determinant Identities." Pacific J. Math. 158, 1-14, 1993.

Bailey, W. N. Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, pp. 25 and 29, 1935.

Whipple, F. J. W. "On Well-Poised Series, Generalized Hypergeometric Series Having Parameters in Pairs, Each Pair with the Same Sum." Proc. London Math. Soc. 24, 247-263, 1926a.

Whipple, F. J. W. "Well-Poised Series and Other Generalized Hypergeometric Series." Proc. London Math. Soc. Ser. 2 25, 525-544, 1926b.

Whipple, F. J. W. "A Fundamental Relation Between Generalized Hypergeometric Series." Proc. London Math. Soc. 26, 257-272, 1927.

EN

تصفح الموقع بالشكل العمودي