1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Inverse Hyperbolic Secant

المؤلف:  Abramowitz, M. and Stegun, I. A.

المصدر:  "Inverse Circular Functions." §4.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover

الجزء والصفحة:  ...

3-6-2019

2238

Inverse Hyperbolic Secant

ArcSech

ArcSechReImAbs
 
 
  Min   Max    
  Re    
  Im      

The inverse hyperbolic secant sech^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic secant (Harris and Stocker 1998, p. 271) and sometimes also denoted arcsechz (Jeffrey 2000, p. 124), is the multivalued function that is the inverse function of the hyperbolic secant. The variants Arcsechz or Arsechz(Harris and Stocker 1998, p. 263) are sometimes used to refer to explicit principal values of the inverse hyperbolic secant, although this distinction is not always made. Worse yet, the notation arccschz is sometimes used for the principal value, with Arcsechz being used for the multivalued function (Abramowitz and Stegun 1972, p. 87). Note that in the notation sech^(-1)zsechz is the hyperbolic secant and the superscript -1 denotes an inverse function, not the multiplicative inverse.

The principal value of sech^(-1)z is implemented in the Wolfram Language as ArcSech[z].

InverseHyperbolicSecantBranchCut

The inverse hyperbolic secant is a multivalued function and hence requires a branch cut in the complex plane, which the Wolfram Language's convention places at the line segments (-infty,0] and (1,infty). This follows from the definition of sech^(-1)z as

 sech^(-1)z=ln(sqrt(1/z-1)sqrt(1/z+1)+1/z).

(1)

For real x, it satisfies

 sech^(-1)x=<span style={ln((1-sqrt(1-x^2))/x) for x<-1; ln((1+sqrt(1-x^2))/x) for x>0. " src="http://mathworld.wolfram.com/images/equations/InverseHyperbolicSecant/NumberedEquation2.gif" style="height:122px; width:256px" />

(2)

The derivative of the inverse hyperbolic secant is given by

 d/zsech^(-1)z=-1/(z(z+1)sqrt((1-z)/(1+z))),

(3)

and its indefinite integral is

 intsech^(-1)zdz 
 =zsech^(-1)z-tan^(-1)(z/(z-1)sqrt((1-z)/(1+z)))+C.

(4)

It has Maclaurin series

sech^(-1)x = -lnx+ln2+sum_(n=1)^(infty)((-1)^(n+1)(2n-1)!!)/(2n(2n)!!)x^(2n)

(5)

= -lnx+ln2-1/4x^2-3/(32)x^4-5/(96)x^6-(35)/(1024)x^8+...

(6)

(OEIS A052468 and A052469).


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). "Inverse Circular Functions." §4.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 79-83, 1972.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 142-143, 1987.

Harris, J. W. and Stocker, H. Handbook of Mathematics and Computational Science. New York: Springer-Verlag, 1998.

Jeffrey, A. Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, 2000.

Sloane, N. J. A. Sequences A052468 and A052469 in "The On-Line Encyclopedia of Integer Sequences."

Spanier, J. and Oldham, K. B. "Inverse Trigonometric Functions." Ch. 35 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 331-341, 1987.

Zwillinger, D. (Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, 1995.

EN

تصفح الموقع بالشكل العمودي