1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Parameter

المؤلف:  Abramowitz, M. and Stegun, I. A.

المصدر:  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.

الجزء والصفحة:  ...

25-4-2019

2171

Parameter

The term "parameter" is used in a number of ways in mathematics. In general, mathematical functions may have a number of arguments. Arguments that are typically varied when plotting, performing mathematical operations, etc., are termed "variables," while those that are not explicitly varied in situations of interest are termed "parameters." For example, in the standard equation of an ellipse

 (x^2)/(a^2)+(y^2)/(b^2)=1,

(1)

x and y are generally considered variables and a and b are considered parameters. The decision on which arguments to consider variables and which to consider parameters may be historical or may be based on the application under consideration. However, the nature of a mathematical function may change depending on which choice is made. For example, the above equation is quadratic in x and y, but if a and b are instead considered as variables, the resulting equation

 b^2x^2+a^2y^2=a^2b^2

(2)

is quartic in a and b.

In the theory of elliptic integrals, "the" parameter is denoted m and is defined to be

 m=k^2,

(3)

where k is the elliptic modulus. An elliptic integral is written I(phi|m) when the parameter is used, whereas it is usually written I(phi,k) where the elliptic modulus is used. The elliptic modulus tends to be more commonly used than the parameter (Abramowitz and Stegun 1972, p. 337; Whittaker and Watson 1990, p. 479), although most of Abramowitz and Stegun (1972, pp. 587-607), i.e., the entire chapter on elliptic integrals, and the Wolfram Language's EllipticE,EllipticFEllipticKEllipticPi, etc., use the parameter.

The complementary parameter is defined by

(4)

where m is the parameter.

Let q be the nome, k the elliptic modulus, where m=k^2. Then

(5)

where K(m) is the complete elliptic integral of the first kind, and . Then the inverse of q(m) is given by

(6)

where theta_i(q) is a Jacobi theta function.


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.

Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.

EN

تصفح الموقع بالشكل العمودي