تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Parameter
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.
الجزء والصفحة:
...
25-4-2019
2171
The term "parameter" is used in a number of ways in mathematics. In general, mathematical functions may have a number of arguments. Arguments that are typically varied when plotting, performing mathematical operations, etc., are termed "variables," while those that are not explicitly varied in situations of interest are termed "parameters." For example, in the standard equation of an ellipse
![]() |
(1) |
and
are generally considered variables and
and
are considered parameters. The decision on which arguments to consider variables and which to consider parameters may be historical or may be based on the application under consideration. However, the nature of a mathematical function may change depending on which choice is made. For example, the above equation is quadratic in
and
, but if
and
are instead considered as variables, the resulting equation
![]() |
(2) |
is quartic in and
.
In the theory of elliptic integrals, "the" parameter is denoted and is defined to be
![]() |
(3) |
where is the elliptic modulus. An elliptic integral is written
when the parameter is used, whereas it is usually written
where the elliptic modulus is used. The elliptic modulus tends to be more commonly used than the parameter (Abramowitz and Stegun 1972, p. 337; Whittaker and Watson 1990, p. 479), although most of Abramowitz and Stegun (1972, pp. 587-607), i.e., the entire chapter on elliptic integrals, and the Wolfram Language's EllipticE,EllipticF, EllipticK, EllipticPi, etc., use the parameter.
The complementary parameter is defined by
![]() |
(4) |
where is the parameter.
Let be the nome,
the elliptic modulus, where
. Then
![]() |
(5) |
where is the complete elliptic integral of the first kind, and
. Then the inverse of
is given by
![]() |
(6) |
where is a Jacobi theta function.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.
Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.