تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Modified Bessel Function of the Second Kind
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
"Modified Bessel Functions I and K." §9.6 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
25-3-2019
4516
The modified bessel function of the second kind is the function which is one of the solutions to the modified Bessel differential equation. The modified Bessel functions of the second kind are sometimes called the Basset functions, modified Bessel functions of the third kind (Spanier and Oldham 1987, p. 499), or Macdonald functions (Spanier and Oldham 1987, p. 499; Samko et al. 1993, p. 20). The modified Bessel function of the second kind is implemented in the Wolfram Language as BesselK[nu, z].
is closely related to the modified Bessel function of the first kind
and Hankel function
,
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
(Watson 1966, p. 185). A sum formula for is
![]() |
(4) |
where is the digamma function (Abramowitz and Stegun 1972). An integral formula is
![]() |
(5) |
which, for , simplifies to
![]() |
(6) |
Other identities are
![]() |
(7) |
for and
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
The special case of gives
as the integrals
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
(Abramowitz and Stegun 1972, p. 376).
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Modified Bessel Functions and
." §9.6 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 374-377, 1972.
Arfken, G. "Modified Bessel Functions, and
." §11.5 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 610-616, 1985.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Modified Bessel Functions of Integral Order" and "Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions." §6.6 and 6.7 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 229-245, 1992.
Samko, S. G.; Kilbas, A. A.; and Marichev, O. I. Fractional Integrals and Derivatives. Yverdon, Switzerland: Gordon and Breach, p. 20, 1993.
Spanier, J. and Oldham, K. B. "The Basset ." Ch. 51 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 499-507, 1987.
Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1966.