

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Hyperfactorial
المؤلف:
Fletcher, A.; Miller, J. C. P.; Rosenhead, L.; and Comrie, L. J
المصدر:
An Index of Mathematical Tables, Vol. 1, 2nd ed. Reading, MA: Addison-Wesley
الجزء والصفحة:
...
23-11-2018
1123
Hyperfactorial

The hyperfactorial (Sloane and Plouffe 1995) is the function defined by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where
is the K-function.
The hyperfactorial is implemented in the Wolfram Language as Hyperfactorial[n].
For integer values
, 2, ... are 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, ... (OEIS A002109).


The hyperfactorial can also be generalized to complex numbers, as illustrated above.
The Barnes G-function and hyperfactorial
satisfy the relation
![]() |
(3) |
for all complex
.
The hyperfactorial is given by the integral
![]() |
(4) |
and the closed-form expression
![]() |
(5) |
for
, where
is the Riemann zeta function,
its derivative,
is the Hurwitz zeta function, and
![]() |
(6) |
also has a Stirling-like series
![]() |
(7) |
(OEIS A143475 and A143476).
has the special value
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
where
is the Euler-Mascheroni constant and
is the Glaisher-Kinkelin constant.
The derivative is given by
|
(11) |
REFERENCES:
Fletcher, A.; Miller, J. C. P.; Rosenhead, L.; and Comrie, L. J. An Index of Mathematical Tables, Vol. 1, 2nd ed. Reading, MA: Addison-Wesley, p. 50, 1962.
Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, p. 477, 1994.
Sloane, N. J. A. Sequences A002109/M3706, A143475, and A143476 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في التحليل العقدي
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية








![H(z)=(2pi)^(-z/2)exp[(z+1; 2)+int_0^zln(t!)dt]](http://mathworld.wolfram.com/images/equations/Hyperfactorial/NumberedEquation2.gif)












قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)