Variation of Argument
المؤلف:
Barnard, R. W.; Dayawansa, W.; Pearce, K.; and Weinberg, D
المصدر:
"Polynomials with Nonnegative Coefficients." Proc. Amer. Math. Soc. 113
الجزء والصفحة:
77-83
17-11-2018
729
Variation of Argument

Let
denote the change in the complex argument of a function
around a contour
. Also let
denote the number of roots of
in
and
denote the sum of the orders of all poles of
lying inside
. Then
![[arg(f(z))]=2pi(N-P).](http://mathworld.wolfram.com/images/equations/VariationofArgument/NumberedEquation1.gif) |
(1)
|
For example, the plots above shows the argument for a small circular contour
centered around
for a function of the form
(which has a single pole of order
and no roots in
) for
, 2, and 3.
Note that the complex argument must change continuously, so any "jumps" that occur as the contour crosses branch cuts must be taken into account.
To find
in a given region
, break
into paths and find
for each path. On a circular arc
 |
(2)
|
let
be a polynomial
of degree
. Then
Plugging in
gives
![[arg(P(z))]=[arg(Re^(ithetan))]+[arg((P(Re^(itheta)))/(Re^(ithetan)))].](http://mathworld.wolfram.com/images/equations/VariationofArgument/NumberedEquation3.gif) |
(5)
|
So as
,
![lim_(R->infty)(P(Re^(itheta)))/(Re^(ithetan))=[constant]](http://mathworld.wolfram.com/images/equations/VariationofArgument/NumberedEquation4.gif) |
(6)
|
![[(P(Re^(itheta)))/(Re^(ithetan))]=0,](http://mathworld.wolfram.com/images/equations/VariationofArgument/NumberedEquation5.gif) |
(7)
|
and
![[arg(P(z))]=[arg(e^(ithetan))]=n(theta_2-theta_1).](http://mathworld.wolfram.com/images/equations/VariationofArgument/NumberedEquation6.gif) |
(8)
|
For a real segment
,
![[arg(f(x))]=tan^(-1)[0/(f(x))]=0.](http://mathworld.wolfram.com/images/equations/VariationofArgument/NumberedEquation7.gif) |
(9)
|
For an imaginary segment
,
{tan^(-1)(I[P(iy)])/(R[P(iy)])}_(theta_1)^(theta_2). " src="http://mathworld.wolfram.com/images/equations/VariationofArgument/NumberedEquation8.gif" style="height:38px; width:213px" /> |
(10)
|
REFERENCES:
Barnard, R. W.; Dayawansa, W.; Pearce, K.; and Weinberg, D. "Polynomials with Nonnegative Coefficients." Proc. Amer. Math. Soc. 113, 77-83, 1991.
الاكثر قراءة في التحليل العقدي
اخر الاخبار
اخبار العتبة العباسية المقدسة