Logarithmic Capacity
المؤلف:
Hille, E
المصدر:
Analytic Function Theory. New York: Chelsea, 1973.
الجزء والصفحة:
...
1-11-2018
753
Logarithmic Capacity
The logarithmic capacity of a compact set
in the complex plane is given by
 |
(1)
|
where
 |
(2)
|
and
runs over each probability measure on
. The quantity
is called the Robin's constant of
and the set
is said to be polar if
or equivalently,
.
The logarithmic capacity coincides with the transfinite diameter of
,
{w_1,...,w_n} subset E)(product_(1<=j<k<=n)|w_j-w_k|)^(2/[n(n-1)]). " src="http://mathworld.wolfram.com/images/equations/LogarithmicCapacity/NumberedEquation3.gif" style="height:51px; width:234px" /> |
(3)
|
If
is simply connected, the logarithmic capacity of
is equal to the conformal radius of
. Tables of logarithmic capacities have been calculated (e.g., Rumely 1989).
REFERENCES:
Hille, E. Analytic Function Theory. New York: Chelsea, 1973.
Rumely, R. Capacity Theory on Algebraic Curves. New York: Springer-Verlag, pp. 348-351, 1989.
الاكثر قراءة في التحليل العقدي
اخر الاخبار
اخبار العتبة العباسية المقدسة