Complex Exponentiation
المؤلف:
Sloane, N. J. A
المصدر:
Sequence A088928 in "The On-Line Encyclopedia of Integer Sequences."
الجزء والصفحة:
...
18-10-2018
976
Complex Exponentiation
A complex number may be taken to the power of another complex number. In particular, complex exponentiation satisfies
 |
(1)
|
where
is the complex argument. Written explicitly in terms of real and imaginary parts,
{cos[carg(a+ib)+1/2dln(a^2+b^2)]+isin[carg(a+ib)+1/2dln(a^2+b^2)]}. " src="http://mathworld.wolfram.com/images/equations/ComplexExponentiation/NumberedEquation2.gif" style="height:50px; width:474px" /> |
(2)
|
An explicit example of complex exponentiation is given by
![(1+i)^(1+i)=sqrt(2)e^(-pi/4)[cos(1/4pi+1/2ln2)+isin(1/4pi+1/2ln2)].](http://mathworld.wolfram.com/images/equations/ComplexExponentiation/NumberedEquation3.gif) |
(3)
|
A complex number taken to a complex number can be real. In fact, the famous example
 |
(4)
|
shows that the power of the purely imaginary
to itself is real.

In fact, there is a family of values
such that
is real, as can be seen by writing
![(ik)^(ik)=e^(-kpi/2)[cos(klnk)+isin(klnk)].](http://mathworld.wolfram.com/images/equations/ComplexExponentiation/NumberedEquation5.gif) |
(5)
|
This will be real when
, i.e., for
 |
(6)
|
for
an integer. For positive
, this gives roots
or
 |
(7)
|
where
is the Lambert W-function. For
, this simplifies to
 |
(8)
|
For
, 2, ..., these give the numeric values 1, 2.92606 (OEIS A088928), 4.30453, 5.51798, 6.63865, 7.6969, ....
REFERENCES:
Sloane, N. J. A. Sequence A088928 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في التحليل العقدي
اخر الاخبار
اخبار العتبة العباسية المقدسة