1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Epsilon-Delta Definition

المؤلف:  المرجع الالكتروني للمعلوماتيه

المصدر:  المرجع الالكتروني للمعلوماتيه

الجزء والصفحة:  ...

19-9-2018

1717

Epsilon-Delta Definition

An epsilon-delta definition is a mathematical definition in which a statement on a real function of one variable f having, for example, the form "for all neighborhoods U of y_0 there is a neighborhood V of x_0 such that, whenever x in V, then f(x) in U" is rephrased as "for all epsilon>0 there is delta>0 such that, whenever 0<|x-x_0|<delta, then |f(x)-y_0|<epsilon." These two statements are equivalent formulations of the definition of the limit (lim_(x->x_0)f(x)=y_0). In the second one, the neighborhood U is replaced by the open interval (y_0-epsilon,y_0+epsilon), and the neighborhood V by the open interval (x_0-delta,x_0+delta). For a function of n variables, the absolute value would be replaced by the norm ||·|| of R^n, and the open intervals by the open balls B(y_0,epsilon) and B(x_0,delta)respectively.

This does not affect the meaning of the statement, since every neighborhood of a given point contains an open ball centered at that point. Hence requiring that, for any epsilon>0f(x) in B(y_0,epsilon) for suitable values of x, ensures that for suitable values of xf(x) in U for any neighborhood U of y_0. These suitable values of x are, according to both versions of the definition, those belonging to a suitable neighborhood (an open ball in the second one).

Both statements express the fact that for all x which lie close enough to x_0f(x) lies as close to y_0 as desired. In the second formulation this condition is entirely expressed in terms of numbers: epsilon and delta are distances that measures the "closeness." This facilitates the task of proving limits since the fundamental formulas are actually shown by constructing, for every epsilon, a delta with the required property.

EN

تصفح الموقع بالشكل العمودي