المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

معنى اختصام الغير
26-4-2022
الآثار الاجتماعية والتّربوية للبيت الآمن
5-10-2014
النسخ في الآيتان (10 ، 11) من سورة الممتحنة
4-1-2016
كَمَّية جاما gamma quantum
5-7-2019
أشعار لابن البني أبي جعفر
21/12/2022
علي بن إسماعيل بن محمد بن علي الغريفي.
17-7-2016

Scalar massless field in the Schwarzschild metric  
  
1477   05:42 مساءً   date: 2-2-2017
Author : Heino Falcke and Friedrich W Hehl
Book or Source : THE GALACTIC BLACK HOLE Lectures on General Relativity and Astrophysics
Page and Part : p 149

Scalar massless field in the Schwarzschild metric

1.1 Field equation

The electromagnetic field and gravitational perturbations are of most interest in astrophysical applications. Both fields are massless and carry spin. For simplicity, we consider first a massless scalar field with zero spin and discuss later effects caused by spin. Moreover, we consider the simpler case of a non-rotating black hole.

A massless scalar field evolves according to the Klein-Gordon equation

 (1.1)

where g is the determinant of the metric gμν and J a scalar charge density.

1.2 Spherical reduction

In a general spherically symmetric spacetime with metric

 (1.2)

one can decompose a general solution into the spherical modes

 (1.3)

where Yℓm(θ, φ) are the spherical harmonics. The functions uℓm obey the two dimensional wave equation

 (1.4)

where 2□ = (−γ)1/2A[(−γ)1/2γ ABB] is the two-dimensional ‘box’ operator for the metric γAB, and

 (1.5)

For the Schwarzschild metric, we find

 (1.6)

1.3 Radial equation and effective potential

We focus now on solutions of the homogeneous equations with jℓm = 0. Since the Schwarzschild geometry is static we can decompose them into monochromatic waves

 (1.7)

where the radial function û(r, ω) is a solution of the equation

 (1.8)

Here r is the so called tortoise coordinate

 (1.9)

 

Figure 1.1. The effective potential V for = 0, 1, 2 as a function of r .

 

Figure 1.2. The same potentials as functions of r. The constant in the definition of r is fixed so that r = 0 for r = 3M.

and V(r ) is the effective potential

 (1.10)

The effective potential for different values of is shown in figures 1.1 and 1.2. The maximum of the effective potential V(r ) is roughly at the location of the unstable circular photon orbit (r = 3M).

The form of the radial wave equation is similar to the quantum mechanical equation for one-dimensional potential scattering and hence most problems concerning perturbed black holes involve elements familiar from potential scattering in quantum mechanics. One would, for example, expect waves of short wavelength λ << rS to be easily transmitted through the barrier. Waves with λrS will be partly transmitted and partly reflected, and finally waves with λ >> rS should be completely reflected by the black hole barrier.

1.4 Basic solutions

Let us consider two linearly independent solutions of the radial wave equations which have the following asymptotic forms

 (1.11)

 (1.12)

They are known as IN and UP modes, respectively. The complex conjugates of these solutions are also solutions of the radial wave equation. They are known as OUT and DOWN modes, respectively. For any two solutions u1 and u2 the Wronskian

 (1.13)

is constant. Calculating the Wronskian for solutions ûin and ûup and their complex conjugates and using their asymptotics, one obtains the following relations:

 (1.14)

 (1.15)

 (1.16)

and

 (1.17)

Since |Ain| ≥ 1, the solutions ûin and ûup are linearly independent.

1.5 Interpretation of basic solutions

Let us discuss the physical meaning of the basic solutions. By combining the radial solutions with exp(-iωt) we get functions describing wave propagation. They have simple physical interpretations. The DOWN solution satisfies the boundary condition that there is no radiation escaping to infinity. This means that exactly the right amount of radiation with just the right phase must emerge from the past horizon H in order to cancel any radiation that might otherwise be scattered back to infinity from a wave originally incoming from past infinity.

Thus, in this solution, there is radiation coming in from infinity, radiation emerging from H to meet it, and radiation going down the black hole at H+. The amplitudes of the various waves are such that down is an acceptable solution to the radial wave equation. The UP mode is defined analogously by the boundary condition that there be no incoming radiation from infinity. In a similar way the IN solution does not contain radiation outgoing from H, while the OUT mode has no radiation going down the black hole at H+. The situation is presented graphically in figure 1.3.

 

Figure 1.3. IN, UP, OUT and DOWN modes.

One can use the diagrams presented in figure 1.3 as mnemonic rules for the definition of the basic functions. The regions inside the squares represent the spacetime in the exterior of the eternal version of the black hole. The straight lines at the angle of π/4 represent null rays. Two boundaries + and correspond to asymptotic future and past infinities. The other two boundaries H+ and H are the event horizon and the past horizon, respectively. This type of diagram can be obtained by special conformal transformations that bring infinitely distant points of the spacetime to a finite distance. The corresponding Penrose-Carter conformal diagram proved to be a very powerful tool for the study of the global structure of spacetime. Asymptotic values of massless fields in an asymptotically flat physical spacetime are related to the boundary values at the null surfaces + and , representing the so-called future and past null infinities.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.