تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Gravitational capture
المؤلف:
Heino Falcke and Friedrich W Hehl
المصدر:
THE GALACTIC BLACK HOLE Lectures on General Relativity and Astrophysics
الجزء والصفحة:
p 137
2-2-2017
1603
Gravitational capture
Let us consider now the motion of a test particle in which its trajectory terminates in the black hole. Two types of such a motion are possible. First, the trajectory of the particle starts at infinity and ends in the black hole. Second, the trajectory starts and ends in the black hole. Of course, a particle cannot be ejected from the black hole. Hence, the motion on the second-type trajectory becomes possible either if the particle was placed on this trajectory via a non-geodesic curve or if the particle was created close to the black hole.
The gravitational capture of a particle coming from infinity is of special interest. Let us have a better look at this case. It is clear from the analysis of motion given in the preceding section that a particle coming from infinity can be captured if its specific energy Ẽ is greater, for a given ˜L, than the maximum (Ẽmax) of the curve V (r ). Let us consider the gravitational capture in two limiting cases, one for a particle whose velocity at infinity is much lower than the speed of light (v∞/c << 1) and another for a particle which is ultrarelativistic at infinity.
In the former case, Ẽ ≈ 1. The curve V (r ), which has Ẽmax = 1, corresponds to ˜Lcr = 2 (line c in figure 5.2). The maximum of this curve lies at r = 2rS. This radius is minimal for the periastra of the orbits of the particles with v∞ = 0 which approach the black hole and again recede to infinity. If ˜L ≤ 2, gravitational capture takes place. The angular momentum of a particle moving with the velocity v∞ at infinity is L = mv∞b, where b is the impact parameter. The condition ˜L ≡ L/mcrS = 2 defines the critical value bcr,nonrel = 2rS (c/v∞) of the impact parameter for which the capture takes place. The capture cross section for a non-relativistic particle is
(1.1)
For an ultrarelativistic particle, bcr = 3√3rS/2, and the capture cross section is
(1.2)
Owing to a possible gravitational capture, not every particle whose velocity exceeds the escape limit flies away to infinity. In addition, it is necessary that the angle ψ between the direction to the black hole center and the trajectory be greater than a certain critical value ψcr. For the velocity equal to the escape threshold this critical angle is given by the expression
(1.3)
The plus sign is chosen for r > 2rS (ψcr < 90o), and the minus sign for r < 2rS (ψcr > 90o).
For an ultrarelativistic particle, the critical angle is given by the formula
(1.4)
The plus sign is taken for r > 1.5rS and the minus for r < 1.5rS.
الاكثر قراءة في الثقوب السوداء
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
