المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
النقل البحري
2024-11-06
النظام الإقليمي العربي
2024-11-06
تربية الماشية في جمهورية كوريا الشعبية الديمقراطية
2024-11-06
تقييم الموارد المائية في الوطن العربي
2024-11-06
تقسيم الامطار في الوطن العربي
2024-11-06
تربية الماشية في الهند
2024-11-06


Bridges  
  
1587   12:56 مساءاً   date: 27-7-2016
Author : Jean-Claude Fournier
Book or Source : Graph Theory and Applications
Page and Part : 48-49


Read More
Date: 14-4-2022 916
Date: 9-3-2022 2141
Date: 28-3-2022 1754

Tree characterizations

Theorem 1.1. The following conditions for a graph G are equivalent:

(1) G is a tree.

(2) G is connected and m = n − 1.

(3) G is acyclic and m = n − 1.

(4) G is connected and every edge is a bridge.

(5) In G any two given vertices are linked by a unique path.

 

Proof. The implications (1)⇒(2), (1)⇒(3), (1)⇒(4), (1)⇒(5), (3)⇒(1) result directly from the above propositions. Implication (4)⇒(1) is straightforward with lemma (An edge of a graph G is a bridge if and only if it does not belong to a cycle of G.) Implication (5)⇒(1) is easy:

if there was a cycle in G, one of its vertices would be joined to itself on the one hand by the cycle, considered as a (closed) path, and on the other hand by the path with of zero length that this vertex defines. This contradicts the hypothesis of the uniqueness of a path linking  any two vertices. To end the proof, that is to verify that these implications are sufficient, we must demonstrate implication (2)⇒(1). Consider  a graph G verifying (2). Remove, as long it is possible, an edge which is not a bridge (first in graph G, and then in the current graph obtained).

The spanning subgraph G/ obtained is connected, like G, because each of the edges removed was not a bridge. It is also an acyclic graph since  it now has nothing but bridges and thus cannot have any cycle (An edge of a graph G is a bridge if and only if it does not belong to a cycle of G.).

This graph Gis therefore a tree, spanning a subgraph of G. Let m/ be the number of edges of G/.We have m/= n−1= m. Thus, G/having the same  number of edges as G, G/= G and G is therefore a tree.


Graph Theory  and Applications ,Jean-Claude Fournier, WILEY, page(48-49)

 

 

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.