المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

نشأة الجغرافيا الحديثة
3-11-2021
وزراء رعمسيس الثاني (الوزير نفر رنبت)
2024-08-18
دفع impulse
21-4-2020
رعمسيس الثاني جزية بلاد (نهرين)
2024-07-31
Phonotactics
2024-06-28
هورمونات الغدة الكظرية : Hormones of Suprarenal
2-6-2016

Filter Binding Assays  
  
2078   04:30 مساءاً   date: 10-5-2016
Author : A. D. Riggs, H. Suzuki, and S. Bourgeois
Book or Source : J. Mol. Biol. 48, 67–83
Page and Part :


Read More
Date: 24-12-2015 2260
Date: 27-12-2015 2267
Date: 5-5-2021 4138

Filter Binding Assays

 

The term filter binding assay is used to describe a variety of different techniques in biochemistry, immunology, virology and molecular biology. In molecular biology a filter binding assay is used to characterize DNA–protein interactions. This particular technique is also referred to as a filter assay or a protein binding assay, and it can be used to identify and characterize both DNA-binding proteins and the DNA sequences that interact with these proteins. The filter binding assay is based on the observation that proteins, but not double-stranded DNA molecules, bind to the surface of nitrocellulose membrane filters (1, 2). Therefore, if a DNA-binding protein is incubated with a specific DNA sequence before analysis in the filter binding assay, the resulting DNA–protein complex and any excess protein will bind to the membrane filter, while uncomplexed DNA will pass through. The amount of the DNA–protein complex retained on the membrane filter can be determined by using radiolabeled DNA to form the DNA–protein complexes and to quantify the amount of radioactivity retained on the nitrocellulose membrane by scintillation counting. The filter binding assay can be very quick if a multifilter vacuum filtration unit is used.

The filter binding assay offers a simple, rapid, sensitive, and versatile assay capable of providing information about the interactions between a DNA-binding protein and a specific DNA sequence. The use of radioactive DNA makes low concentrations of DNA and protein feasible. A typical experiment involves the titration of a constant amount of radiolabeled DNA with the DNA-binding protein of interest. The amount of radioactivity retained on the membrane increases with increasing protein concentration until all the radioactive DNA that can bind to the specific DNA-binding protein is depleted from the incubation mixture. Binding affinities can be determined by observing the level of specific complexes formed in the presence of a nonradioactive competitor DNA. The kinetics of association and dissociation of a specific DNA–protein complex can also be studied in the filter binding assay. However, filter binding assays cannot differentiate between dissimilar DNAprotein complexes, so this assay is effective only when one DNA–protein complex is formed. In addition, the DNA-binding protein must not be denatured during the purification process, because the filter binding assay is dependent on the interaction between the DNA-binding protein and a specific DNA sequence.

 Because various membrane filters differ in binding specificities, the ability of nitrocellulose membranes to bind proteins and not native DNA is critical to the success of the filter binding assay. However, the molecular basis for this discrimination is not well understood. Both electrostatic and hydrophobic interactions have been suggested to be involved in the binding of macromolecules to nitrocellulose, but hydrophobic interactions are assumed to play the dominant role in the binding process. Although native DNA does not bind to nitrocellulose, heat-denatured DNA will (3) and should not be used in this assay. In addition, the native DNA tested in the assay must be free of contaminating proteins that could bind the DNA to the nitrocellulose membrane in the absence of the DNA-binding protein being tested.

 Most proteins bind to nitrocellulose, but individual binding affinities are dependent on the surface characteristics of the particular protein. Therefore, the retention of a particular DNA–protein complex on the nitrocellulose filter will depend on the surface characteristics of the protein, the binding capacity of the nitrocellulose membrane, the time that the DNA–protein complex has to interact with the filter, and the regimen used to wash the filter. A rapid flow rate through the filter may not permit the binding of some DNA–protein complexes to the nitrocellulose membrane, and extensive washing of the filter may remove DNA–protein complexes with low affinities for nitrocellulose. The optimum conditions needed to bind a DNA–protein complex to the nitrocellulose membrane will be different for each protein and should be investigated for each filter binding assay.

References

1. O. W. Jones and P. Berg (1966) J. Mol. Biol. 22, 199–209

2. A. D. Riggs, H. Suzuki, and S. Bourgeois (1970) J. Mol. Biol. 48, 67–83

3. A. P. Nygaard and B. D. Hall (1963) Biochem. Biophys. Res. Commun. 12, 98–104. 




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.