المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05
أوجه الاستعانة بالخبير
2024-11-05
زكاة البقر
2024-11-05
الحالات التي لا يقبل فيها الإثبات بشهادة الشهود
2024-11-05
إجراءات المعاينة
2024-11-05
آثار القرائن القضائية
2024-11-05


Electron Tomography  
  
2249   02:35 مساءاً   date: 2-5-2016
Author : J. Frank
Book or Source : Electron Tomography, Plenum Press, New York
Page and Part :

 Electron Tomography

 

 Electron tomography is defined as the generation of a 3-D reconstruction from an electron microscope tilt series (1). This powerful technique is closely related to computerized axial tomography used by CAT scanners in radiological imaging in the computational methods used to calculate a 3-D structure from many two-dimensional images or projections recorded over a wide range of tilt angles. The use of tomography has proved valuable not only for the determination of macromolecular complexes (2-4), but also for the visualization and analysis of relatively large, complex biological structures. Because of variable size, large-scale biological structures such as organelles elude crystallographic or single-particle approaches that require multiple images of identical structures. Electron tomography is especially powerful for these complex structures, but until recently, it has not enjoyed widespread application because of obstacles that are now being removed (5). Electron tomography presently is the imaging technique that provides the highest 3-D resolution (capable of 5–10 nm) of the internal features of organelle-size structures. This is accomplished by recording a series of images of a single specimen over a wide range of tilt angles with a small interval of tilt angle. Typically such a tilt series would consist of 61 images recorded at tilt angles from –60° to +60° in 2° increments. The individual images must be digitized (unless recorded directly in digital form using a CCD camera attached to the microscope), aligned to a common origin, and processed using computer algorithms, similar to those used in computerized tomography in medical imaging, to reconstruct a 3-D volume from a series of 2-D projections. Since whole cells and organelles, such as mitochondria, are relatively large, the images must be recorded from specimens embedded in semithick sections, 0.25–1 µm thick. Such thick specimens require the use of higher voltage electron microscopes, intermediate voltage electron microscopes (IVEM's( with accelerating voltages up to 400,000 volts, or high-voltage electron microscopes with accelerating voltages up to 1,200,000 volts. By comparison, typical transmission electron microscopes have accelerating voltages of approximately 100,000 volts. The higher voltage electron microscopes are relatively expensive, and most users wishing to do electron tomography of thick specimens must use instruments made available in national facilities.

 Until recently, the bulk of our knowledge of the architecture of organelles and bacteria has come from untilted images of sections. The 3-D architecture is usually inferred from these images, sometimes with the aid of stereo imaging or serial-section reconstruction. Although thin-section electron microscopy provides relatively high-resolution images, an incorrect impression of the 3-D structure may be obtained because one is looking at only a very thin slice through a complex 3-D object. On the other hand, electron tomography offers an opportunity to map topology more accurately by providing improved resolution along the z-axis, while circumventing major deficiencies in stereo imaging and serial-section reconstructions. This technique provided the resolution necessary to observe characteristics of mitochondrial structure that differ from long-held conceptions (6,7). These newly appreciated characteristics include: (i) All observed cristae connect to the inner boundary membrane via narrow, tubular openings, termed crista junctions. (ii) Tubular cristae merge, sometimes from opposite ends of the mitochondrial periphery, to form lamellar compartments. (iii) Contact sites are not clustered about crista junctions. The full power of electron tomography is now being explored to generate 3-D distributions of specifically labeled or immunolocalized components.

References

1. J. Frank (1992) Electron Tomography, Plenum Press, New York

2. R. A. Horowitz et al. (1994) J. Cell Biol. 125, 1–10

3. H. Mehlin, B. Daneholt, and U. Skoglund (1992) Cell 69, 605–613.

4. M. Moritz et al. (1995) Nature 378, 638–640

5. J. Frank (1995) Curr. Op. Struct. Biol. 7, 266–272. 




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.