المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05
أوجه الاستعانة بالخبير
2024-11-05
زكاة البقر
2024-11-05
الحالات التي لا يقبل فيها الإثبات بشهادة الشهود
2024-11-05
إجراءات المعاينة
2024-11-05
آثار القرائن القضائية
2024-11-05

مرض الحصبة في البطيخ Measles
2024-10-04
متسلسلة Series
1-12-2015
نظام "أماجات" Amagat system
25-10-2017
الهرمون المحرر للهرمون المنشط لإفراز هرمونات الدرقية (Thyrotropin releasing hormone, TRH)
5-4-2016
فـهم المـقاومـة للتغييـر
16-8-2019
قوة الطرد المركزية
18-5-2016

Jyesthadeva  
  
1303   09:45 صباحاً   date: 13-1-2016
Author : G G Joseph
Book or Source : The crest of the peacock
Page and Part : ...


Read More
Date: 15-1-2016 1030
Date: 15-1-2016 1341
Date: 12-1-2016 896

Born: about 1500 in Kerala, India
Died: about 1575 in Kerala, India

 

Jyesthadeva lived on the southwest coast of India in the district of Kerala. He belonged to the Kerala school of mathematics built on the work of Madhava, Nilakantha Somayaji, Paramesvara and others.

Jyesthadeva wrote a famous text Yuktibhasa which he wrote in Malayalam, the regional language of Kerala. The work is a survey of Kerala mathematics and, very unusually for an Indian mathematical text, it contains proofs of the theorems and gives derivations of the rules it contains. It is one of the main astronomical and mathematical texts produced by the Kerala school. The work was based mainly on the Tantrasamgraha of Nilakantha.

The Yuktibhasa is a major treatise, half on astronomy and half on mathematics, written in 1501. The Tantrasamgraha on which it is based consists of 432 Sanskrit verses divided into 8 chapters, and it covers various aspects of Indian astronomy. It is based on the epicyclic and eccentric models of planetary motion. The first two chapters deal with the motions and longitudes of the planets. The third chapter Treatise on shadow deals with various problems related with the sun's position on the celestial sphere, including the relationships of its expressions in the three systems of coordinates, namely ecliptic, equatorial and horizontal coordinates.

The fourth and fifth chapters are Treatise on the lunar eclipse and On the solar eclipse and these two chapters treat various aspects of the eclipses of the sun and the moon. The sixth chapter is On vyatipata and deals with the complete deviation of the longitudes of the sun and the moon. The seventh chapter On visibility computation discusses the rising and setting of the moon and planets. The final chapter On elevation of the lunar cusps examines the size of the part of the moon which is illuminated by the sun and gives a graphical representation of it.

The Yuktibhasa is very important in terms of the mathematics Jyesthadeva presents. In particular he presents results discovered by Madhava and the treatise is an important source of the remarkable mathematical theorems which Madhava discovered. Written in about 1550, Jyesthadeva's commentary contained proofs of the earlier results by Madhava and Nilakantha which these earlier authors did not give. In [4] Gupta gives a translation of the text and this is also given in [2] and a number of other sources. Jyesthadeva describes Madhava's series as follows:-

The first term is the product of the given sine and radius of the desired arc divided by the cosine of the arc. The succeeding terms are obtained by a process of iteration when the first term is repeatedly multiplied by the square of the sine and divided by the square of the cosine. All the terms are then divided by the odd numbers 1, 3, 5, .... The arc is obtained by adding and subtracting respectively the terms of odd rank and those of even rank. It is laid down that the sine of the arc or that of its complement whichever is the smaller should be taken here as the given sine. Otherwise the terms obtained by this above iteration will not tend to the vanishing magnitude.

This is a remarkable passage describing Madhava's series, but remember that even this passage by Jyesthadeva was written more than 100 years before James Gregory rediscovered this series expansion. To see how this description of the series fits with Gregory's series for arctan(x) see the biography of Madhava. Other mathematical results presented by Jyesthadeva include topics studied by earlier Indian mathematicians such as integer solutions of systems of first degree equation solved by the kuttaka method, and rules of finding the sines and the cosines of the sum and difference of two angles.

Not only does the mathematics anticipate work by European mathematicians a century later, but the planetary theory presented by Jyesthadeva is similar to that adopted by Tycho Brahe.


 

Books:

  1. G G Joseph, The crest of the peacock (London, 1991).
  2. K V Sarma, A History of the Kerala School of Hindu Astronomy (Hoshiarpur, 1972).
  3. R C Gupta, Addition and subtraction theorems for the sine and the cosine in medieval India, Indian J. History Sci. 9 (2) (1974), 164-177.
  4. R C Gupta, The Madhava-Gregory series, Math. Education 7 (1973), B67-B70.
  5. S Parameswaran, Madhavan, the father of analysis, Ganita-Bharati 18 (1-4) (1996), 67-70.
  6. K V Sarma, and S Hariharan, Yuktibhasa of Jyesthadeva : a book of rationales in Indian mathematics and astronomy - an analytical appraisal, Indian J. Hist. Sci. 26 (2) (1991), 185-207.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.