المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10712 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
طريقة علاج اللجاج والمماراة
2025-01-10
دوافع وعواقب اللجاج والمماراة
2025-01-10
اللجاج والمماراة في الروايات الإسلامية
2025-01-10
التبرير والعناد في القرآن
2025-01-10
التبرير والعناد
2025-01-10
الدورة الزراعية المناسبة لزراعة البرسيم المصري
2025-01-10

شَرَائِط الحج
15-8-2017
Peroxisomal α-oxidation
11-10-2021
سلوك الحشرات
16-11-2021
رضا الأم وسخطها
11-9-2016
الإستطراد
25-03-2015
السمات الغالبة للرأي العام
22-5-2022

Dehydrogenases  
  
3849   01:01 صباحاً   date: 1-1-2016
Author : L. Smith and J. J. Burchall
Book or Source : Proc. Natl. Acad. Sci. 80, 4619–4623
Page and Part :


Read More
Date: 11-3-2021 2220
Date: 16-6-2021 1878
Date: 19-12-2015 2427

Dehydrogenases

 

 Pyridine nucleotide-linked dehydrogenases are enzymes that catalyze oxidation–reduction reactions involving a pyridine nucleotide and the transfer of a hydride (one proton and two electrons) from or to a second substrate molecule. Most dehydrogenase reactions are readily reversible, but some are not, and the enzymes responsible for essentially irreversible reactions are referred to as reductases; there are exceptions, however, such as formate dehydrogenase . The oxidized forms of the pyridine nucleotides are NAD (nicotinamide adenine dinucleotide) and NADP. The latter nucleotide has an additional phosphoryl group attached at the 2′-position of the ribose that is part of the adenosyl moiety (Fig. 1). The general form of a dehydrogenase reaction can be illustrated by reference to the reaction catalyzed by lactate dehydrogenase (Eq. 1)

Not all dehydrogenase reactions are as simple as that described by Equation 1. The oxidation reactions catalyzed by isocitrate and glutamate dehydrogenases give rise to the release of CO2 and NH3, respectively. NAD and NADP are written frequently as NAD+ and NADP+ even though the overall charge on the molecule is negative in the neutral pH region; the plus refers to the charge on the nitrogen atom of the nicotinamide moiety of the oxidized forms of the pyridine nucleotides.

Dehydrogenases usually show a distinct preference for one or the other of the two pyridine nucleotides; examples are given in Table 1, and a more extensive list is available (1). The binding to the enzyme of the nonpreferred nucleotide is generally weaker, and the maximum velocity is usually lower. 

Figure 1. Structure of NADH / NADPH, showing the two prochiral hydrogen atoms at the 4-position of the nicotinamide moiety. R at the 2′-position of the ribose moiety represents either a hydrogen atom (NADH) or phosphoryl group (NADPH).

Table 1. Pyridine Nucleotide Specificity of Some Dehydrogenases

In dehydrogenase reactions (Eq. 1), the hydride is transferred to the 4-position of the nicotinamide ring of NAD or NADP (Fig. 1). The two hydrogen atoms at this position in NADH and NADPH are chemically equivalent, and the tetrahedral carbon atom is not chiral. However, the two hydrogen atoms at the 4-position are prochiral. The binding of reduced pyridine nucleotides to dehydrogenases is such that hydride transfer involves only one of the two hydrogen atoms. Thus, the enzymes exhibit regiospecificity, and hydride transfer occurs either from the pro-R hydrogen (A-side specificity) or from the pro-S hydrogen (B-side specificity). Examples of dehydrogenases that fall into each of these two classes are given in Table 1. Attempts have been made to explain why some dehydrogenases are A-side and others are B-side, but no convincing explanation has been forthcoming (2).

 The side-specificity of dehydrogenases allows the preparation of reduced pyridine nucleotides with a deuterium (D) or tritium (T) atom replacing a hydrogen atom in either the pro-R or pro-S positions. Extensive use has been made of deutero- and tritio-pyridine nucleotides to gain information about enzymic catalysis (3). The cleavage of a bond can be expected to be two to eight times slower than with a bond. With chemical reactions, the full isotope effect difference in rates is usually observed, because the bond-breaking step is rate-limiting. But with enzyme-catalyzed reactions, steps other than the catalytic one can be at least partly rate-limiting. This results in the observed isotope effect, with NADD or NADPD being smaller than the absolute value for the bond-breaking step. Indications as to where the rate-limiting steps lie for a particular dehydrogenase reaction come from the use of initial velocity studies to determine the apparent first-order rate constants k and the maximum velocities V with the protio- and deutero-substrates. The observed isotope effects are then calculated from the ratio of the values for (V/K)H and (V/K)D, expressed as D  )V/K) and the ratio of the values for VH and VD, expressed as DV. The values for these ratios usually range from 1.0 to 3.5. Low values for D(V/K) can result from the stickiness of substrates. Values for DV will be low whenever product release is rate-limiting (3). The tritiated forms, NADT and NADPT, can be used for determinations of T(V/K), but not from initial velocity studies, as the tritium is only a trace label. For this same reason, it is not possible to obtain values for TV. The value for T )V/K) will be higher than that for D(V/K) as the bond is stiffer than the bond. As Tk = (Dk)1.442, the general function [Dk – 1]/[Dk1.442 – 1] can be used to determine the intrinsic isotope effect for a dehydrogenase reaction (4). It is this value that gives insights into the chemical mechanism of the reaction and the nature of the transition state.

 The pyridine nucleotides that function as effective substrates for most dehydrogenases have a nicotinamide–ribose linkage (Fig. 1) with a b-anomeric configuration and are referred to, for example, as b-NAD. These pyridine nucleotides also occur with an a-anomeric configuration and are found in tissue extracts, as well as commercial preparations. Both a-NADH and b-NADH undergo thermal epimerization reactions to produce an equilibrium mixture with 10% of the a form (5).  There are no examples of a dehydrogenase that specifically uses a-NADH or a-NADPH, although alcohol dehydrogenase and lactate dehydrogenases utilize a-NADH with maximum velocities some three to four orders of magnitude lower than with b-NADH. The same side-specificity is observed with both anomers of NADH (5). By contrast, a-NADPH is a relatively good substrate for the dihydrofolate reductase that is encoded by an R-plasmid (6). The Km value of 17 µM is comparable to the value of 4 µM for b-NADPH. The maximum velocity of the reaction with a-NADPH is 70% of that with b-NADPH. It has been proposed that those dehydrogenases which show activity with both the a- and b-anomers must have sufficient conformational freedom to permit specific orientation of the dihydronicotinamide ring for the reduction of other substrates.

References

1. G. Popjak (1970) The Enzymes 2, 115–215

2. N. J. Oppenheimer (1984) J. Am. Chem. Soc. 106, 3032–3033

3. W. W. Cleland (1982) CRC Crit. Rev. Biochem. 13, 385–428

4.  D. B. Northrop (1975) Biochemistry 14, 2644–2651

5. N. J. Oppenheimer and N. O. Kaplan (1975) Arch. Biochem. Biophys. 166, 526–535.

6. S. L. Smith and J. J. Burchall (1983) Proc. Natl. Acad. Sci. 80, 4619–4623. 




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.