النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Blotting Matrices
المؤلف:
A. De Maio
المصدر:
In Protein Blotting: A Practical Approach
الجزء والصفحة:
14-12-2015
4547
Blotting Matrices
Blotting is the process of transferring macromolecules from electrophoretic gels to immobilizing matrices, called blotting matrices. The variety of matrices available for blotting is quite diverse, and the characteristics of each directly affects the ultimate result and quality in different blot analyses [see Blotting, Southern Blots (DNA Blots), Protein Blots (Western Blots), RNA Blots (Northern Blots), and Blot Overlays]. Generally, two kinds of blot matrices are used: (1) chemically modified paper filters and (2) microporous membrane filters. Although filters are used, blotting depends on chemical adsorption of transferred molecules to the filter material itself, rather than filtration perse, where separation is achieved by size exclusion. Thus porosity is less important than the chemical composition, density, and thickness of the material. After binding of the desired ligand, normally the remaining binding sites on the matrix are blocked with a neutral compound, known as a quencher or blocking reagent.
1.Paper Filters
Initially, it was thought that transferred molecules would be best suited for blotting if they were covalently bound to the blotting matrix. This led to chemically modified paper filters that contained active moieties to bind DNA, RNA, and protein covalently. For example, cyanogen bromide (CNBr)-activated paper was produced (1), as was diazobenzyloxymethyl (DBM) paper, which was the most popular filter of this type (2). These filters covalently immobilize the blotted macromolecules, but they are cumbersome to handle, have the fibrous texture characteristic of blotting paper, and therefore are rarely used today.
2.Membrane Filters
Microporous membrane filters have become the matrices of choice for blotting. These materials are thin films of synthetic polymers with very fine, uniform surfaces. Filters with average porosities of 0.2 to 0.45 µm are extremely suitable for all types of blotting. A variety of materials exist, and each offers unique advantages.
2.1.Nitrocellulose
Nitrocellulose is by far the most commonly used blotting matrix. It binds DNA, RNA, and protein reasonably well, although the mechanism is not clear (3, 4). Hydrophobic interactions definitely play a role, and the salt conditions are critical, particularly for the adsorption of RNA. Nitrocellulose is often produced as a mixed ester with cellulose acetate, which reduces to some extent its binding capacity for proteins. The advantages of nitrocellulose are that it binds protein well and affords very good signal-to-background ratios in Western blotting assays. It allows staining of the immobilized protein patterns with such dyes as Ponceau S and Amido black. It becomes brittle, however, after baking at 80°C (typical for Southern and Northern blotting), which reduces the repeated use of these filters. Furthermore, nitrocellulose is less resistant to various organic solvents, such as methanol (5).
2.2. Nylon Membranes
Nylon membranes were introduced initially as an alternative to nitrocellulose for protein blotting (5), and subsequently they were applied in RNA and DNA transfers (4). These membranes are usually derivatives of nylon 66 and often are modified with positive charges. They have proven exceptional binders of DNA, RNA, and protein, but at times this presents some difficulty by producing high backgrounds, particularly in protein blotting. These filters are mechanically stable and thus can be reprobed numerous times without lossing band definition or sensitivity.
2.3. Polyvinyl Difluoride
Polyvinyl difluoride (PVDF) membrane filters have a special application in blotting where subsequent chemical manipulation of the immobilized macromolecule is desired. A case in point is the use of these membranes in protein blots, where the individual bands are excised out of the blot and subjected to Edman Degradation for N-terminal amino acid sequencing of the resolved and blotted polypeptide chains (6, 7).
References
1.L. Clarke, R. Hitzman, and J. Carbon (1979) Methods Enzymol. 68, 436–442.
2.J. C. Alwine, D. J. Kemp, and G. R. Stark (1977) Proc. Natl. Acad. Sci. USA 74, 5350–5354.
3.A. De Maio (1994) In Protein Blotting: A Practical Approach (B. S. Dunbar, ed.), IRL Press, Oxford, UK, pp. 11–32.
4.J. Meinkoth and G. Wahl (1984) Anal. Biochem. 138, 267–284.
5.J. M. Gershoni and G. E. Palade (1982) Anal. Biochem. 124, 396–405.
6.M. A. Mansfield (1994) In Protein Blotting: A Practical Approach (B. S. Dunbar, ed.), IRL Press, Oxford, UK, pp. 33–52.
7. C. Eckerskorn and F. Lottspeich (1993) Electrophoresis 14, 831–838.
الاكثر قراءة في مواضيع عامة في الاحياء الجزيئي
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
