المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 11172 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

نوادر علي بن أسباط الكوفيّ.
2023-08-16
الغاية من وجود البرزخ‏
15-12-2015
مقتل عبد الله بن الزبير
17-11-2016
صلة الوصية الواجبة بالوصية الاختيارية
26-9-2018
احمد البلخي
1-6-2016
[إحياء عاشوراء]
23-6-2019

Crawling, wriggling, swimming and walking  
  
148   01:08 صباحاً   date: 2025-02-13
Author : P.J. Gullan and P.S. Cranston
Book or Source : The Insect an outline of Entomology
Page and Part : 5th E , P60-61


Read More
Date: 2025-01-29 196
Date: 2025-02-05 153
Date: 20-7-2021 2509

 Soft-bodied larvae with hydrostatic skeletons move by crawling. Muscular contraction in one part of the body gives equivalent extension in a relaxed part elsewhere on the body. In apodous (legless) larvae, such as dipteran “maggots”, waves of contractions and relaxation run from head to tail. Bands of adhesive hooks or tubercles successively grip and detach from the substrate to provide a forward motion, aided in some maggots by use of their mouth hooks to grip the substrate. In water, lateral waves of contraction against the hydrostatic skeleton can give a sinuous, snake-like, swimming motion, with anterior-to-posterior waves giving an undulating motion.

Larvae with thoracic legs and abdominal prolegs, like caterpillars, develop posterior-to-anterior waves of turgor muscle contraction, with as many as three waves visible simultaneously. Locomotor muscles operate in cycles of successive detachment of the thoracic legs, reaching forwards and grasping the substrate. These cycles occur in concert with inflation, deflation and forward movement of the posterior prolegs.

Insects with hard exoskeletons can contract and relax pairs of agonistic and antagonistic muscles that attach to the cuticle. Compared to crustaceans and myriapods, insects have fewer legs (six) and these are located more ventrally and closer together on the thorax, allowing concentration of locomotor muscles (both ying and walking) into the thorax, and providing more control and greater efficiency. Motion with six legs at low to moderate speed allows continuous contact with the ground by a tripod of fore and hind legs on one side and mid leg on the opposite side thrusting rearwards (retraction), whilst each opposite leg is moved forwards (protraction) (Fig. 1). The centre of gravity of the slow-moving insect always lies within this tripod, giving great stability. Motion is imparted through thoracic muscles acting on the leg bases, with transmission via internal leg muscles through the leg to extend or ex the leg. Anchorage to the substrate, needed to provide a lever to propel the body, is through pointed claws and adhesive pads (the arolium or, in flies and some beetles, pulvilli). Claws, such as those illustrated in the vignette at the beginning of Chapter 2, can obtain purchase on the slightest roughness in a surface, and the pads of some insects can adhere to perfectly smooth surfaces through the application of lubricants to the tips of numerous fine hairs and by the action of close-range molecular forces between the hairs and the substrate.

fig1. A ground beetle(Coleoptera: Carabidae: Carabus) walking in the direction of the dashed line. The three blackened legs are those in contact with the ground in the two positions illustrated– (a) is followed by (b). (After Wigglesworth 1972.)

When faster motion is required, there are several alternatives: increasing the frequency of the leg movement by shortening the retraction period; increasing the stride length; altering the triangulation basis of support to adopt quadrupedy (use of four legs); or even hind-leg bipedality, with the other legs held above the substrate. At high speeds, even those insects that maintain triangulation are very unstable and may have no legs in contact with the substrate at intervals. This instability at speed seems to cause no difficulty for cockroaches, which when filmed with high-speed video cameras have been shown to maintain speeds of up to 1ms−1 whilst twisting and turning up to 25 times per second. This motion was maintained by sensory information received from one antenna whose tip-maintained contact with an experimentally provided wall, even when it had a zig-zagging surface.

Many insects jump, some prodigiously, usually using modified hind legs. In orthopterans, flea beetles (Chrysomelidae: Alticini) and a range of weevils (Curculionidae), an enlarged hind femur contains large muscles whose slow contraction produces energy that is stored by either distortion of the femoro-tibial joint or in some spring-like sclerotization, for example the hind-leg tibial extension tendon. In fleas, the energy is produced by the trochanter levator muscle raising the femur, and is stored by compression of an elastic resilin pad in the coxa. In all these jumpers, release of tension is sudden, resulting in propulsion of the insect into the air– usually in an uncontrolled manner, although eas can attain their hosts with some control over the leap. The main benefit for flighted jumping insects may be to get into the air before opening the wings, so as to avoid damage from the surrounding substrate.

In swimming, contact with the water is maintained during protraction, so the insect must impart more thrust to the rowing motion than to the recovery stroke in order to progress. This is achieved by expanding the effective leg area during retraction by extending fringes of hairs and spines that collapse onto the folded leg during the recovery stroke. We have seen already how some insect larvae swim using contractions against their hydrostatic skeleton. Others, including many nymphs and the larvae of caddisflies, can walk underwater and, particularly in running waters, do not swim routinely.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.