المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
تربية الماشية في جمهورية كوريا الشعبية الديمقراطية
2024-11-06
تقييم الموارد المائية في الوطن العربي
2024-11-06
تقسيم الامطار في الوطن العربي
2024-11-06
تربية الماشية في الهند
2024-11-06
النضج السياسي في الوطن العربي
2024-11-06
تربية الماشية في روسيا الفيدرالية
2024-11-06

الحكومة الصالحة والتنمية
28-6-2016
مفهوم الاستنزاف
2023-07-10
تبلور العسل
1-12-2015
مرض تكيس الحضنة Sacbrood Disease
3-12-2015
القاضي أبو القاسم التنوخي
29-12-2015
نهاية حكومة معين
12-11-2016

Chromosome Aberrations  
  
2012   01:16 صباحاً   date: 14-10-2015
Author : Gardner, R. J. McKinlay, and G. R. Sutherland
Book or Source : Chromosome Abnormalities and Ge­netic Counseling
Page and Part :


Read More
Date: 19-10-2015 2328
Date: 22-10-2015 2104
Date: 3239

Chromosome Aberrations

Chromosome aberrations are departures from the normal set of chromo­somes either for an individual or from a species. They can refer to changes in the number of sets of chromosomes (ploidy), changes in the number of individual chromosomes (somy), or changes in appearance of individual chromosomes through mutation-induced rearrangements. They can be as­sociated with genetic diseases or with species differences.

Trisomy

Chromosome number, size, and shape (X-shaped or V-shaped) are fixed for each species. In most animals, chromosomes are present in pairs, called homologous pairs, carrying similar genes. Each chromosome pair carries a distinctive set of genes. Gene's code for proteins, and the amount of pro­tein produced in a cell from a particular gene is proportional to the num­ber of functional gene copies present.

Trisomy refers to having three copies of one chromosome. It arises through the chromosomal accident of nondisjunction during meiosis, which sends two copies of a particular chromosome into a sperm or egg, rather than one. An individual with a trisomy who survives to be born produces more of the gene products encoded on the trisomic chromosome. The re­sulting genic imbalance almost always severely impairs growth. Trisomy of the twenty-first chromosome, the smallest in humans, is the cause of Down syndrome, which is associated with mental retardation, congenital heart dis­ease, accelerated aging, and characteristic facial features. Trisomy that oc­curs after fertilization, during fetal development, results in a “mosaic” individual with only some trisomic cells in the body. Such individuals may display some but not all of the features of the syndrome.

Trisomics for different chromosomes result in different abnormal char­acteristics. In humans, trisomies 13 and 18 are associated with different birth defects. While these individuals do not live long after birth, trisomies for any of the other non-sex chromosomes die before birth. Monosomies (having only one copy) for any chromosome also do not survive fetal existence except for the sex chromosomes X and Y. Sex chromosome trisomies and monosomy for the X chromosome are associated with less severe effects on the phenotype.

Translocations

Translocations are the result of a chromosomal-level mutation, with two different (nonhomologous) chromosomes breaking and rejoining, placing the genes from one part of the one chromosome with part of the second chromosome, and vice versa. The number of genes is unchanged. Occa­sionally, the breakpoint mutation interrupts and inactivates the gene located at that chromosomal site. In other cases, the juxtaposition of new deoxyri­bonucleic acid (DNA) sequences from the other chromosome next to a gene at the breakpoint results in inappropriate expression. This action may acti­vate an oncogene, for example. The “Philadelphia chromosome” is a translocation that fuses parts of chromosomes 9 and 22, which produces a new gene product that functions as an oncogene called Abl, which is impli­cated in chronic myelogenous leukemia.

Inherited translocations are passed through generations in a codomi­nant fashion. Since one copy of each chromosome remains normal, both parent and progeny with such a translocation are heterozygous or “bal­anced” carriers. Half their gametes will include one copy of each gene, ei­ther on the translocated chromosomes or their normal homologs. The other half, however, are unbalanced with some combination of translocated and normal homologs. The result is that the gamete has two copies of some genes, but no copies of other genes, from the translocated chromosomes. Such an “unbalanced” gamete, if it takes part in fertilization, often disrupts development so greatly that the individual does not survive to be born. If the number of unbalanced genes is low, however, children may be born, but often they have growth defects and mental retardation. Couples with re­current spontaneous abortions may have one partner carrying a balanced translocation. Thus, gene copy number determines the specific phenotypes associated with a translocation, or with any chromosome aberration. Ex­treme examples of the importance of gene number are triploidy (3n = 69 for humans) and tetraploidy (4n = 92). These individuals nearly always die early in fetal life and are detected only in the remains of early spontaneous abortions. However, intolerance of polyploidy may be a mammalian phe­nomenon. It is common among plants, and frogs that are triploid are both viable and fertile.

Robertsonian translocations are a special class that results from the fusion of two V-shaped chromosomes at their centromere ends to form a single X-shaped chromosome. Individuals who are balanced for this translocation have forty-five chromosomes, but are otherwise normal. However, during gamete formation, some gametes will become unbalanced, and their prog­eny are at risk for being aneuploid (without the correct set of genes). If the two fused chromosomes are homologs, then the risk is 100 percent that the zygote will be aneuploid since it will either have too few or too many genes. If nonhomologs are fused, the risk is usually 50 percent. About 5 percent of Down syndrome cases are caused by Robertsonian translocations.

A photomicrograph of human chromosomes showing a mutation on gene 7, which is responsible for cystic fibrosis.

Chromosome fusions or exchanges at the centromere position can of­ten be correlated with differences between closely related species. The great apes (chimpanzees and gorillas) have forty-eight chromosomes, for exam­ple. Their chromosome constitution differs from humans only in having one fewer small X-shaped chromosome pair and two additional small V-shaped pairs. At some point in our past, the V-shaped pairs fused at the centromeres to form the X-shaped pairs. Using DNA sequences that are conserved among vertebrate species as position markers, it is possible to create comparative maps of conserved blocks of genes. All mammalian X chromosomes are alike in the genes present, for instance. Thus, changes visible at the chromosome level are useful markers to follow the evolutionary relatedness of different species. Further comparison of conserved sequences suggests the vertebrate genome is a tetraploid (four-copy) version of the invertebrate genome.

Polyploidy

Changes in ploidy are of evolutionary importance in the flowering plants (an­giosperms). Tetraploid plants often grow faster and larger than the diploid plants they derive from, and tend to be selected for agriculture. Alfalfa, coffee, wheat, peanuts, and potatoes are some examples. Commercially grown strawberries are octaploids (eight chromosome sets). Triploid plants, formed by crossing tetraploid with related diploid species, are almost always sterile because their aneuploid seeds abort. Seedless watermelons and bananas are examples of this technique used to improve fruit for human consumption.

A digital image of multipolar and bipolar spindles from T84 colonic cancer cell cultures.

An example of plant polyploidy that affected human civilization and his­tory is the origin of wheat. Modern bread wheat, cultivated for about eight hybrid combination of thousand years, is a hexaploid with 2n = 42, formed by sequential hybrids Two formed among three related grass species, each with 2n = 14. To complete the circle, modern hybridizers have created a new species, Triticale, by cross­ing the ancestral Emmer wheat (2n = 28) with rye (2n = 14) and then dou­bling the chromosome number to 42 to take advantage of strong wheat lysine an amino acid growth with the high lysine content of rye. DNA analysis is scrutinizing the hybrid origins of many cultivated plants to identify their ancestors.

REFERNCES

Gardner, R. J. McKinlay, and G. R. Sutherland. Chromosome Abnormalities and Ge­netic Counseling. Oxford: Oxford University Press, 1996.

John, Bernard. Meiosis. New York: Cambridge University Press, 1990.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.