Blow-Up Lemma
المؤلف:
Komlós, J.; Sárkőzy, G. N.; and Szemerédi, E
المصدر:
"Blow-Up Lemma." Combinatorica 17
الجزء والصفحة:
...
18-5-2022
1847
Blow-Up Lemma
The blow-up lemma essentially says that regular pairs in Szemerédi's regularity lemma behave like complete bipartite graphs from the point of view of embedding bounded degree subgraphs.
In particular, given a graph
of order
, minimal vertex degree
and maximal vertex degree
, then there exists an
such that the following holds. Let
be an arbitrary positive integer, and replace the vertices of
with pairwise disjoint
-sets
,
, ...,
(blowing up). Now construct two graphs on the same vertex set
. The graph
is obtained by replacing all edges of
with copies of the complete bipartite graph
, and construct a sparser graph by replacing the edges of
with some
-superregular pair. If a graph
with
is embeddable into
, then it is already embeddable into
(Komlós et al. 1998).
REFERENCES
Komlós, J.; Sárkőzy, G. N.; and Szemerédi, E. "Blow-Up Lemma." Combinatorica 17, 109-123, 1997.
Komlós, J.; Sárkőzy, G. N.; and Szemerédi, E. "Proof of the Seymour Conjecture for Large Graphs." Ann. Comb. 2, 43-60, 1998.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة