تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Graceful Labeling
المؤلف:
Arumugam, S. and Bagga, J.
المصدر:
"Graceful Labeling Algorithms and Complexity-A Survey." J. Indonesian Math. Soc., Special edition, 1-9
الجزء والصفحة:
...
6-5-2022
2444
Graceful Labeling
A graceful labeling (or graceful numbering) is a special graph labeling of a graph on edges in which the nodes are labeled with a subset of distinct nonnegative integers from 0 to
and the graph edges are labeled with the absolute differences between node values. If the resulting graph edge numbers run from 1 to
inclusive, the labeling is a graceful labeling and the graph is said to be a graceful graph.
Not all graphs possess a graceful labeling; those that do not are said to be ungraceful.
Some gracefully numbered graphs are illustrated above.
The vertex labels must include 0 and . This can be seen since the edge labels must contain
, but the only way to form an absolute difference of
from two vertex labels each between 0 and
inclusive is for one to be 0 and the other to be
. Furthermore, the vertices bearing labels 0 and
must be adjacent for the same reason.
If a set of labels form a graceful labeling for a graph, then so do the labels
. Therefore, with the exception of the singleton graph
, all graceful graphs have an even number of graceful labelings.
"Fundamentally different" graceful labelings (cf. Gardner 1983, p. 164) refer to labelings that are distinct modulo subtractive complementation and the symmetries of the graph (i.e., the graph automorphism group). For example, while there are a large number of graceful labelings of the icosahedral graph, there are only a small number of fundamentally different ones (cf. Gardner 1983, pp. 163-164, who reported a computation producing 5 fundamentally different labelings; the actual number seems to be 24).
There exist graphs whose vertices can be labeled with distinct nonnegative integers such that graph edge numbers run from 1 to , but where the maximum vertex number must exceed
. Since such graphs violate the maximum allowed vertex label in the definition of gracefulness, they are ungraceful. An example of such a graph is the disjoint union
of the path graph
and claw graph
, illustrated above. While there appears to be no standard term for such graphs in the literature, they might be termed "excessively graceful."
Graceful labelings may be generated using perfect rulers, i.e., rulers of integer length with the minimum possible numbers of marks so that all distances 1 to
can be measured.
There are graceful labelings for graphs on
graph edges having no isolated points corresponding to the Lehmer encodings of the
permutations of
(Sheppard 1976), although some of these correspond to alternate labelings of the same graph. The numbers of nonisomorphic graceful graphs with no isolated points on
edges for
, 2, ... are 1, 1, 3, 5, 12, 37, 112, 340, 1078, 3620, 12737, ... (OEIS A308544), while the numbers of connected graceful graphs on
edges are 1, 1, 3, 5, 11, 28, 79, 227, 701, 2302, 8071, ... (OEIS A308545).
Golomb showed that the number of graph edges connecting the even-numbered and odd-numbered sets of nodes is , where
is the number of graph edges.
The following table summarizes the numbers of fundamentally distinct graceful labelings. Arumugam and Bagga (2011) give (total) counts for the cycle graph up to
, though typographical errors are present for
and 23.
class | OEIS | counts |
antiprism graph |
A000000 | X, X, 1, 26, 20, ... |
Apollonian network | 1, 33,, ... | |
barbell graph | X, X, 1, 0, 0, ... | |
book graph | 1, 16, 0, 417, ... | |
centipede graph | A000000 | 1, 1, 4, 30, 232, 2058, 26654, ... |
complete bipartite graph |
A335619 | 1, 1, 1, 4, 1, 7, 2, 10, 3, ... |
complete graph |
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ... | |
complete tripartite graph |
A339891 | 1, 4, 7, 12, 20, 34, 74, 131, 260, ... |
complete tripartite graph |
1, 1, 0, 0, 0, 0, 0, ... | |
crown graph |
A000000 | 0, 0, 0, 27, 69, X, 0, ... |
cycle graph |
A000000 | X, X, 1, 1, 0, 0, 6, 12, 0, 0, 104, 246, 0, 0, 3882, ... |
dipyramidal graph | X, X, 4, 1, 7, 0, 22, X, X, 0, ... | |
empty graph |
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | |
gear graph | A000000 | X, X, 34, 358, 6781, 231758, 10575203, 695507601, ... |
grid graph |
A000000 | 1, 1, 358, 47428572, ... |
grid graph |
1, 27, ... | |
halved cube graph | 1, 1, 1, 0, ... | |
Hanoi graph | 1, 140, ... | |
helm graph | X, X, 109, 777, ... | |
hypercube graph |
A000000 | 1, 1, 27, 607173, ... |
1, 1, 154, ... | ||
1, 0, 12, ... | ||
ladder graph |
A000000 | 1, 1, 16, 177, 2242, 48068, ... |
Möbius ladder |
A000000 | X, X, 1, 34, 750, 8451, 208882, 5371997, 207664885, ... |
pan graph | A000000 | X, X, X, 5, 8, 13, 30, 60, 160, 394, 924, 2434, 7178, 21446, ... |
path complement graph |
A000000 | 1, 0, 0, 1, 13, 34, 45, 18, 1, ... |
path graph |
A000000 | 1, 1, 1, 1, 2, 6, 8, 10, 30, 74, 162, 332, 800, 2478, 6398, 13980, ... |
prism graph |
A000000 | X, X, 4, 27, 444, ... |
star graph |
A000012 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... |
sun graph | A000000 | X, X, 0, 204, 4765, ... |
sunlet graph | A000000 | X, X, 9, 42, 255, 2283, 27361, ... |
triangular snake graph |
1, 1, 0, 0, 368, ... | |
web graph | X, X, 894, ... | |
wheel graph |
A000000 | X, X, 1, 4, 12, 23, 67, 251, 1842, 10792, ... |
REFERENCES
Arumugam, S. and Bagga, J. "Graceful Labeling Algorithms and Complexity-A Survey." J. Indonesian Math. Soc., Special edition, 1-9, 2011.
Gardner, M. "Mathematical Games: The Graceful Graphs of Solomon Golomb, or How to Number a Graph Parsimoniously." Sci. Amer. 226, No. 3, 108-113, March 1972.
Gardner, M. "Golomb's Graceful Graphs." Ch. 15 in Wheels, Life, and Other Mathematical Amusements. New York: W. H. Freeman, pp. 152-165, 1983.
Golomb, S. W. "How to Number a Graph." In Graph Theory and Computing (Ed. R. C. Read). New York: Academic Press, pp. 23-37, 1972.
Knuth, D. E. §7.2.2.3 in The Art of Computer Programming, Vol. 4B. In preparation, 2020.Sheppard, D. A. "The Factorial Representation of Balanced Labelled Graphs." Discr. Math. 15, 379-388, 1976.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
