تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Local Graph
المؤلف:
Brouwer, A. E.; Cohen, A. M.; and Neumaier, A.
المصدر:
Distance Regular Graphs. New York: Springer-Verlag
الجزء والصفحة:
...
26-4-2022
1896
Local Graph
A graph is said to be locally
, where
is a graph (or class of graphs), when for every vertex
, the graph induced on
by the set of adjacent vertices of
(sometimes called the ego graph in more recent literature) is isomorphic to (or to a member of)
. Note that the term "neighbors" is sometimes used instead of "adjacent vertices" here (e.g., Brouwer et al. 1989), so care is needed since the definition of local graphs excludes the vertex
on which a subgraph is induced, while the definitions of graph neighborhood and neighborhood graph include
itself.
For example, the only locally pentagonal (cycle graph ) graph is the icosahedral graph (Brouwer et al. 1989, p. 5).
The following table summarizes some named graphs that have named local graphs.
graph | local graph |
24-cell graph | cubical graph |
cocktail party graph |
16-cell graph |
cocktail party graph |
cocktail party graph |
complete graph |
complete graph |
complete |
complete |
Conway-Smith graph | Petersen graph |
19-cyclotomic graph | cycle graph |
31-cyclotomic graph | prism graph |
37-cyclotomic graph | |
43-cyclotomic graph | 7-Möbius ladder graph |
64-cyclotomic graph | (3,7)-rook graph |
generalized hexagon |
circulant graph |
generalized octagon |
|
Gosset graph | Schläfli graph |
Hall graph | Petersen graph |
Hall-Janko graph | |
circulant graph |
|
line graph of the Hoffman-Singleton graph | circulant graph |
icosahedral graph | cycle graph |
(8,4)-Johnson graph | (4,4)-rook graph |
(9,4)-Johnson graph | (4,5)-rook graph |
Klein graph | cycle graph |
(7,2)-Kneser graph | Petersen graph |
(8,2)-Kneser graph | generalized quadrangle GQ(2,2) |
(10,3)-Kneser graph | odd graph |
circulant graph |
|
(4,4)-rook graph complement | generalized quadrangle GQ(2,1) |
octahedral graph | square graph |
13-Paley graph | cycle graph |
17-Paley graph | 4-Möbius ladder |
25-Paley graph | circulant graph |
29-Paley graph | circulant graph |
pentatope graph | tetrahedral graph |
Schläfli graph | 5-halved cube graph |
Shrikhande graph | cycle graph |
600-cell graph | icosahedral graph |
16-cell graph | octahedral graph |
6-tetrahedral graph | generalized quadrangle GQ(2,1) |
7-tetrahedral graph | circulant graph |
8-tetrahedral graph | circulant graph |
9-tetrahedral graph | (3,6)-rook graph |
10-tetrahedral graph | (3,7)-rook graph |
tetrahedral graph | triangle graph |
5-triangular graph | prism graph |
quartic vertex-transitive graph Qt31 |
The following table gives a list of some local graphs and graphs in which they are contained.
local graph |
graphs containing |
37-cyclotomic graph | |
generalized hexagon GH(3,1), generalized octagon GO(3,1), (4,4)-rook graph | |
(3,4)-Hamming graph | |
(4,4)-Hamming graph | |
cycle graph |
icosahedral graph |
cycle graph |
Shrikhande graph, circulant graph |
cycle graph |
Klein graph |
cubical graph | 24-cell graph, circulant graph |
generalized quadrangle GQ(2,1) | (4,4)-rook graph complement, 6-tetrahedral graph |
generalized quadrangle GQ(2,2) | (8,2)-Kneser graph |
5-halved cube graph | Schläfli graph |
icosahedral graph | 600-cell graph |
4-Möbius ladder | 17-Paley graph |
7-Möbius ladder | 43-cyclotomic graph |
octahedral graph | 16-cell graph |
Petersen graph | Conway-Smith graph, Hall graph, (7,2)-Kneser graph |
prism graph |
5-triangular graph |
prism graph |
31-cyclotomic graph |
quartic vertex-transitive graph Qt31 | |
Schläfli graph | Gosset graph |
square graph |
octahedral graph |
tetrahedral graph | pentatope graph |
triangle graph |
tetrahedral graph |
Hall-Janko graph | |
utility graph | complete tripartite graph |
REFERENCES
Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. Distance Regular Graphs. New York: Springer-Verlag, pp. 4-5, 256, and 434, 1989.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
