تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Characteristic Polynomial
المؤلف:
Balasubramanian, K.
المصدر:
"Computer-Generation of the Characteristic-Polynomials of Chemical Graphs." J. Comput. Chem. 5
الجزء والصفحة:
...
17-4-2022
2344
Characteristic Polynomial
The characteristic polynomial is the polynomial left-hand side of the characteristic equation
(1) |
where is a square matrix and
is the identity matrix of identical dimension. Samuelson's formula allows the characteristic polynomial to be computed recursively without divisions. The characteristic polynomial of a matrix
may be computed in the Wolfram Language as CharacteristicPolynomial[m, x].
The characteristic polynomial of a matrix
(2) |
can be rewritten in the particularly nice form
(3) |
where is the matrix trace of
and
is its determinant.
Similarly, the characteristic polynomial of a matrix is
(4) |
where Einstein summation has been used, which can also be written explicitly in terms of traces as
(5) |
In general, the characteristic polynomial has the form
(6) |
|||
(7) |
where is the matrix trace
of the matrix
,
, and
is the sum of the
-rowed diagonal minors of the matrix
(Jacobson 1974, p. 109).
Le Verrier's algorithm for computing the characteristic polynomial of a graph (Balasubramanian 1984; Trinajstić 1988; Ivanciuc and Balaban 2000, p. 89) can be formulated as the solution of the linear system
(8) |
where
(9) |
, and
.
An algorithm due to Balasubramanian computes using the equation
(10) |
where
(11) |
(Balasubramanian 1985, 1985, 1991; Ivanciuc and Balaban 2000, p. 90; typo corrected) with and
.
The characteristic polynomial of a graph is defined as the characteristic polynomial of its adjacency matrix and can be computed in the Wolfram Language using CharacteristicPolynomial[AdjacencyMatrix[g], x]. The precomputed characteristic polynomial of a named graph in terms of a variable
can also be obtained using GraphData[graph, "CharacteristicPolynomial"][x].
Characteristic polynomials are not diagnostic for graph isomorphism, i.e., two nonisomorphic graphs may share the same characteristic polynomial. The smallest such example occurs for the two graphs on five nodes illustrated above, both of which have characteristic polynomial . The number of distinct characteristic polynomials for simple undirected graphs on
, 2, ... nodes are 1, 2, 4, 11, 33, 151, 988, 11453, ... (OEIS A082104), giving the number of duplicated characteristic polynomials as 0, 0, 0, 0, 1, 5, 56, 893, 27311, ....
The following table summarizes the characteristic polynomials for some simple graphs.
graph | characteristic polynomial |
complete graph |
|
complete graph |
|
complete graph |
|
cyclic graph |
|
cyclic graph |
|
cyclic graph |
|
cubical graph | |
octahedral graph | |
tetrahedral graph | |
wheel graph |
|
wheel graph |
REFERENCES
Balasubramanian, K. "Computer-Generation of the Characteristic-Polynomials of Chemical Graphs." J. Comput. Chem. 5, 387-394, 1984.
Balasubramanian, K. "The Use of Frames Method for the Characteristic-Polynomials of Chemical Graphs." Theor. Chim. Acta 65, 49-58, 1984.
Balasubramanian, K. "Computer-Assisted Enumeration of Walks and Self-Returning Walks on Chemical Graphs." Comput. Chem. 9, 43-52, 1985.
Balasubramanian, K. "Comments on the Characteristic Polynomial of a Graph." J. Comput. Chem. 12, 248-253, 1991.
Devillers, J. and A. T. Balaban (Eds.). Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam, Netherlands: Gordon and Breach, pp. 83-92, 2000.
Golub, G. H. and Van Loan, C. F. Matrix Computations, 3rd ed. Baltimore, MD: Johns Hopkins University Press, p. 310, 1996.
Hagos, E. M. "The Characteristic Polynomial of a Graph is Reconstructible from the Characteristic Polynomials of its Vertex-Deleted Subgraphs and Their Complements." Elec. J. Combin. 7, No. 1, R12, 1-9, 2000.
http://www.combinatorics.org/Volume_7/Abstracts/v7i1r12.html.Ivanciuc, P. "Chemical Graph Polynomials. Part 2. The Propagation Diagram Algorithm for the Computation of the Characteristic Polynomial of Molecular Graphs." Rev. Roumaine Chim. 37, 1341-134, 1992.
Ivanciuc, O. and Balaban, A. T. "The Graph Description of Chemical Structures." Ch. 3 in Topological Indices and Related Descriptors in QSAR and QSPR (Ed. J. Devillers and A. T. Balaban). Amsterdam, Netherlands: Gordon and Breach, pp. 59-167, 2000.
Jacobson, N. Basic Algebra I. San Francisco: W. H. Freeman, 1974.Krivka, P.; Jeričević, Ž.; and Trinajstić, N. "On the Computation of Characteristic Polynomial of a Chemical Graph." Int. J. Quant. Chem.: Quant. Chem. Symp. 19, 129-147, 1986.
Sloane, N. J. A. Sequence A082104 in "The On-Line Encyclopedia of Integer Sequences."Trinajstić, N. "The Characteristic Polynomial of a Chemical Graph." J. Math. Chem. 2, 197-215, 1988.
Zivković, T. "On the Evaluation of the Characteristic Polynomial of a Chemical Graph." J. Comput. Chem. 11, 217-222, 1990.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
