تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Graph Embedding
المؤلف:
Chung, F.; Leighton, T.; and Rosenberg, A
المصدر:
"Embeddings Graphs in Books: A Layout Problem with Applications to VLSI Design." SIAM J. Algebraic Disc. Meth. 8
الجزء والصفحة:
...
5-4-2022
1589
Graph Embedding
A graph embedding, sometimes also called a graph drawing, is a particular drawing of a graph. Graph embeddings are most commonly drawn in the plane, but may also be constructed in three or more dimensions. The above figure shows several embeddings of the cubical graph. The most commonly encountered graph embeddings are generally straight line embeddings, in which all edges are drawn as straight line segments.
A good choice of embedding can lead to particularly illuminating diagrams. For example, the circular (left) embedding of the cubical graph illustrates this graph's inherent symmetries.
Skiena (1990) considers a number of different types of embeddings, including circular, ranked, radial, rooted, and spring. Graph embeddings can be visualized in the Wolfram Language in two dimensions using the option GraphLayout. Alternately, GraphPlot[g] can be used in two dimensions and GraphPlot3D[g] in three dimensions. Embeddings for trees can be visualized using TreePlot[g].
Precomputed embeddings of certain types for a number of graphs are available in the Wolfram Language as GraphData[g, "Graph", type].
REFERENCES
Chung, F.; Leighton, T.; and Rosenberg, A. "Embeddings Graphs in Books: A Layout Problem with Applications to VLSI Design." SIAM J. Algebraic Disc. Meth. 8, 33-58, 1987.
Di Battista, G.; Eades, P.; Tamassia, R.; and Tollis, I. G. Graph Drawing: Algorithms for the Visualization of Graphs. Englewood Cliffs, NJ: Prentice-Hall, 1998.Di Battista, G.; Garg, A.; Liotta, G.; Tamassia, R.; Tassinari, E.; and Vargiu, F. "An Experimental Comparison of Four Graph Drawing Algorithms." Computational Geom. 7, 303-325, 1997.
Eades, P. "A Heuristic for Graph Drawing." Congr. Numer. 42, 149-160, 1984.
Eades, P.; Fogg, I.; and Kelly, D. SPREMB: A System for Developing Graph Algorithms. Technical Report. Department of Computer Science. St. Lucia, Queensland, Australia: University of Queensland, 1988.
Eades, P. and Tamassia, R. "Algorithms for Drawing Graphs: An Annotated Bibliography." Technical Report CS-89-09. Department of Computer Science. Providence, RI: Brown University, Feb. 1989.
Kamada, T. and Kawai, S. "An Algorithm for Drawing General Undirected Graphs." Inform. Processing Lett. 31, 7-15, 1989.
Malitz, S. M. "Genus g Graphs Have Pagenumber ." In Proc. 29th Sympos. Found. Computer Sci. IEEE Press, pp. 458-468, 1988.
Pemmaraju, S. and Skiena, S. Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge, England: Cambridge University Press, 2003.Reingold, E. and Tilford, J. "Tidier Drawings of Trees." IEEE Trans. Software Engin. 7, 223-228, 1981.
Skiena, S. "Graph Embeddings." §3.3 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 81 and 98-118, 1990.
Supowit, K. and Reingold, E. "The Complexity of Drawing Trees Nicely." Acta. Inform. 18, 377-392, 1983.
Tamassia, R. "Graph Drawing." Ch. 21 in Handbook of Computational Geometry (Ed. J.-R. Sack and J. Urrutia). Amsterdam, Netherlands: North-Holland, pp. 937-971, 2000.
Vaucher, J. "Pretty Printing of Trees." Software Pract. Experience 10, 553-561, 1980.
Wetherell, C. and Shannon, A. "Tidy Drawings of Trees." IEEE Trans. Software Engin. 5, 514-520, 1979.
White, A. T. "Imbedding Problems in Graph Theory." Ch. 6 in Graphs of Groups on Surfaces: Interactions and Models (Ed. A. T. White). Amsterdam, Netherlands: Elsevier, pp. 49-72, 2001.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
