Ultraproduct
المؤلف:
Bell, J. L. and Slomson, A. B.
المصدر:
Models and Ultraproducts: an Introduction. Amsterdam, Netherlands: North-Holland, 1971.
الجزء والصفحة:
...
13-2-2022
995
Ultraproduct
Let
be a language of first-order predicate logic, let
be an indexing set, and for each
, let
be a structure of the language
. Let
be an ultrafilter in the power set Boolean algebra
. Then the ultraproduct of the family
is the structure
that is given by the following:
1. For each fundamental constant
of the language
, the value of
is the equivalence class of the tuple
, modulo the ultrafilter
.
2. For each
-ary fundamental relation
of the language
, the value of
is given as follows: The tuple
is in
if and only if the set
{i in I|(x_1(i),...,x_n(i))}" src="https://mathworld.wolfram.com/images/equations/Ultraproduct/Inline21.svg" style="height:22px; width:189px" /> is a member of the ultrafilter
.
3. For each
-ary fundamental operation
of the language
, and for each
-tuple
, the value of
is
.
The ultraproduct
of the family
is typically denoted
.
REFERENCES
Bell, J. L. and Slomson, A. B. Models and Ultraproducts: an Introduction. Amsterdam, Netherlands: North-Holland, 1971.
Burris, S. and Sankappanavar, H. P. A Course in Universal Algebra. New York: Springer-Verlag, 1981.
http://www.thoralf.uwaterloo.ca/htdocs/ualg.html.Enderton, H. B. A Mathematical Introduction to Logic. New York: Academic Press, 1972.
Hurd, A. E. and Loeb, P. A. An Introduction to Nonstandard Real Analysis. Orlando, FL: Academic Press, 1985.
الاكثر قراءة في المنطق
اخر الاخبار
اخبار العتبة العباسية المقدسة