تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
arski,s Theorem
المؤلف:
Collins, G. E
المصدر:
"Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition." In Proc. 2nd GI Conf. Automata Theory and Formal Languages. New York: Springer-Verlag
الجزء والصفحة:
...
20-1-2022
1033
arski's Theorem
Tarski's theorem says that the first-order theory of reals with ,
,
, and
allows quantifier elimination. Algorithmic quantifier elimination implies decidability assuming that the truth values of sentences involving only constants can be computed. However, the converse is not true. For example, the first-order theory of reals with
,
, and
is decidable, but does not allow quantifier elimination.
Tarski's theorem means that the solution set of a quantified system of real algebraic equations and inequations is a semialgebraic set (Tarski 1951, Strzebonski 2000).
Although Tarski proved that quantifier elimination was possible, his method was totally impractical (Davenport and Heintz 1988). A much more efficient procedure for implementing quantifier elimination is called cylindrical algebraic decomposition. It was developed by Collins (1975) and is implemented as CylindricalDecomposition[ineqs, vars].
REFERENCES
Collins, G. E. "Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition." In Proc. 2nd GI Conf. Automata Theory and Formal Languages. New York: Springer-Verlag, pp. 134-183, 1975.
Davenport, J. and Heintz, J. "Real Quantifier Elimination Is Doubly Exponential." J. Symb. Comput. 5, 29-35, 1988.
Marker, D. "Model Theory and Exponentiation." Not. Amer. Math. Soc. 43, 753-759, 1996.
Strzebonski, A. "Solving Algebraic Inequalities." Mathematica J. 7, 525-541, 2000.
Tarski, A. "Sur les ensembles définissables de nombres réels." Fund. Math. 17, 210-239, 1931.
Tarski, A. A Decision Method for Elementary Algebra and Geometry. Manuscript. Santa Monica, CA: RAND Corp., 1948.
Republished as A Decision Method for Elementary Algebra and Geometry, 2nd ed. Berkeley, CA: University of California Press, 1951.
الاكثر قراءة في المنطق
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
