المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05



الاحتواء المغناطيسي Magnetic Confinement  
  
1734   12:42 صباحاً   التاريخ: 2-1-2022
المؤلف : د/ محمد شحادة الدغمة و أ.د/ علي محمد جمعة
الكتاب أو المصدر : الفيزياء النووية
الجزء والصفحة : ج2 ص 402
القسم : علم الفيزياء / الفيزياء الحديثة / الفيزياء النووية / مواضيع عامة في الفيزياء النووية /


أقرأ أيضاً
التاريخ: 25-1-2022 2323
التاريخ: 17-1-2022 1760
التاريخ: 30-3-2017 1625
التاريخ: 26-3-2017 2506

الاحتواء المغناطيسي Magnetic Confinement

من السهل احتواء جسيم مشحون يتحرك بزخم معين باستخدام المجال المغناطيسي، إن ذلك ما نستخدمه حالياً لتعجيل الجسيمات المشحونة في المعجل الدوار. ولكن المشكلة تنشأ عندما نريد احتواء كثافة عالية من الجسيمات لأن هذه الجسيمات سوف تتصادم مع بعضها البعض وتتشتت. لنفترض أننا تمكنا من بناء ملفات كهربية قادرة على توليد مجال مغناطيسي عظيم نستطيع بواسطته احتواء البلازما الساخنة في حيز ضيق . وهذا يعني أن هذه البلازما سوف تؤثر بضغط هائل ضد المجال. وسوف يؤثر هذا الضغط بقوة هائلة على الملفات الكهربية والإنشاءات فمثلاً إذا كانت لدينا بلازما ذات كثافة منخفضة وضغط منخفض يقدر بحوالي 6-10 من الضغط الجوي فإنه عندما تصل درجة حرارة البلازما إلى درجة حرارة التفاعل الحراري نووي فإن ذلك سينشأ عنه ضغط يقدر بحوالي عشرة ضغوط جوية، ومن ثم تتضح لنا مشكلة القوة المؤثرة على الملفات والإنشاءات. ومن ثم فإنه إذا نجحنا في تصميم هذه الملفات. فإن قدرة الإنشاءات على التحمل سوف تفرض علينا العمل عند كثافة منخفضة للرقود ومن ثم سنحصل على طاقة محدودة. إن الأبحاث تتجه نحو محاولة بناء العديد من أجهزة الاحتواء المغناطيسي. يبين الشكل (1) حركة شحنة في مجال مغناطيسي. حيث نجد أن الشحنات سوف تتحرك في مسارات حلزونية حول خطوط المجال وعمودية عليها وبالتالي

الشكل (1)

فإن الشحنات تصبح أسيرة المجال. إذ أنها تتحرك جول خطوطه ولكنها لا تتمكن من اختراق هذه الخطوط. وبالتالي نشأت تقنية الزجاجات المغناطيسية (Magnetic Bettles) لاحتواء البلازما عند درجات الحرارة الحراري نووية. ويمكن أن تصنف هذه في مجموعتين رئيسيتين وهما: هندسيات المجالات المفتوحة والمغلقة. في حالة الهندسيات المفتوحة فإن خطوط المجال سوف تغادر المنظومة عند نهاية ومن ثم تهرب معها الجسيمات المشحونة. لنفترض الآن أنه عند نهاية المنظومة ازدادت شدة المجال المغناطيسي وأصبحت خطوط المجال أكثر اقتراباً من بعضها البعض فإن ذلك ينشأ عنه مركبة قوة تعمل على ارتداد الجسيمات إلى الخلف في اتجاه شدة المجال الأضعف ومن ثم تعمل هذه النهاية كمرآة مغناطيسية Magnetic Mirror. يبين الشكل (2) الزجاجة المغناطيسية ونظرية عملها. في الشكل (2) نبين مسار جسيم مشحون في المجال المغناطيسي المؤثر في الاتجاه (Z) حيث تزداد شدة المجال بزيادة Z. أي تقترب خطوطه من بعضها البعض كلما زادت (Z). وهذا يعني أن هناك مركبة رأسية (Br) للمجال قد نشأت وتزداد بزيادة (Z) . سوف تؤثر هذه المركبة على الجسيم بقوة Fz (أنظر الشكل 2.أ) تعمل في اتجاه منطقة المجال الأضعف. وهذا يعني أن مركبة سرعة الجسيم في اتجاه Z الموجب سوف تتناقص. أما مركبة السرعة الدائرية سوف تزداد (نظراً لأن الطاقة الكلية للجسيم

الشكل (2)

محفوظة) ومن ثم تزداد الطاقة في اتجاه المجال Z. فإذا ما كانت مركبة السرعة الدائرية كبيرة بما فيه الكفاية فإن الجسيم سوف يعكس اتجاه حركته عند طرف المجال الأقوى ومن ثم ترتد هذه الجسيمات إلى الخلف أي تنعكس في اتجاه المجال الأضعف. وبالتالي كأن هذا الطرف من المجال قد عمل كمرآة. ومن ثم جاءت التسمية (المرآة المغناطيسية أنظر الشكل (2 ،ب)) وهكذا نجد أن الإيونات تتحرك جيئة وذهاباً بين المرآتين المغناطيسيتين. إن ما يحدث هنا يشبه ما يحدث عند القطبين المغناطيسيين للكرة الأرضية إذ أن المجالات الكبيرة بالقرب من القطبين تعمل على احتواء البروتونات والإلكترونات في حزام فان -ألن Van-Allen ومن ثم تحمي جو الأرض من هذه الجسيمات المؤينة. حيث تتمكن هذه المجالات من رد هذه الجسيمات المشحونة نحو الفضاء الخارجي مرة أخرى. وعلى كل حال سوف تتمكن بعض الجسيمات العالية الطاقة من التسرب خلف المرآة المغناطيسية عند نهايتي المجال المغناطيسي وهكذا نستطيع أن تحتوي هذه الجسيمات، ومن ثم البلازما داخل هذا الحيز المغناطيسي. لاحظ هنا أنه عندما يحدث تصادم بين هذين الجسيمات فسوف تتمكن من تغيير المسار وقد تتمكن من الهرب (التسرب) خارج الزجاجة المغناطيسية.

لنفترض الآن أننا تمكنا من لف هذا الجهاز المستقيم بحيث التحمت النهايتان لتكونان مجالاً حلقياً (Toroid) ومن ثم فإننا نستغنى عن المرآة المغناطيسية وبالتالي لن تستطيع الجسيمات الهرب من المجال. وهذه هي فكرة التوكاماك وبعض الأجهزة الأخرى.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.