المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

المفاهيم القانونية للبدو
25-1-2017
كاي لاي – ارثور
6-9-2016
Angles
12-3-2017
دعاية الترابط
17-1-2021
الشيخ محمد محسن ابن الشيخ عبد علي العاملي
6-2-2018
الوصف النباتي لنخيل التمور وطبيعة نموها
13-1-2016

Transamination: Funneling amino groups to glutamate  
  
1484   11:06 صباحاً   date: 5-11-2021
Author : Denise R. Ferrier
Book or Source : Lippincott Illustrated Reviews: Biochemistry
Page and Part :

Transamination: Funneling amino groups to glutamate

 

The first step in the catabolism of most amino acids is the transfer of their α-amino group to α-ketoglutarate (Fig. 1), producing a α-keto acid (derived from the original amino acid) and glutamate. α- Ketoglutarate plays a pivotal role in amino acid metabolism by accepting the amino groups from most amino acids, thereby becoming glutamate. Glutamate produced by transamination can be oxidatively deaminated  or used as an amino group donor in the synthesis of nonessential amino acids. This transfer of amino groups from one carbon skeleton to another is catalyzed by a family of enzymes called aminotransferases (also called transaminases). These enzymes are found in the cytosol and mitochondria of cells throughout the body. All amino acids, with the exception of lysine and threonine, participate in transamination at some point in their catabolism. [Note: These two amino acids lose their α-amino groups by deamination.

Figure 1: Aminotransferase reaction using α-ketoglutarate as the amino group acceptor. PLP = pyridoxal phosphate.

1. Substrate specificity: Each aminotransferase is specific for one or, at

most, a few amino group donors. Aminotransferases are named after the

specific amino group donor, because the acceptor of the amino group is

almost always α-ketoglutarate. Two important aminotransferase reactions are catalyzed by alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as shown in Figure 2.

Figure 2: Reactions catalyzed during amino acid catabolism. A.Alanine aminotransferase (ALT). B. Aspartate aminotransferase (AST). PLP = pyridoxal phosphate.

a. Alanine aminotransferase: ALT is present in many tissues. The enzyme catalyzes the transfer of the amino group of alanine to α-ketoglutarate, resulting in the formation of pyruvate and glutamate. The reaction is readily reversible. However, during amino acid catabolism, this enzyme (like most aminotransferases) functions in the direction of glutamate synthesis. [Note: In effect, glutamate acts as a collector of nitrogen from most amino acids.]

b. Aspartate aminotransferase: AST is an exception to the rule that aminotransferases funnel amino groups to form glutamate. During amino acid catabolism, AST primarily transfers amino groups from glutamate to oxaloacetate, forming aspartate, which is used as a source of nitrogen in the urea cycle. Like other transaminations, the AST reaction is reversible.

2. Mechanism: All aminotransferases require the coenzyme pyridoxal phosphate (a derivative of vitamin B6), which is covalently linked to the ε-amino group of a specific lysine residue at the active site of the enzyme. Aminotransferases act by transferring the amino group of an amino acid to the pyridoxal part of the coenzyme to generate pyridoxamine phosphate. The pyridoxamine form of the coenzyme then reacts with an α-keto acid to form an amino acid, at the same time regenerating the original aldehyde form of the coenzyme. Figure 3 shows these two component reactions for the transamination catalyzed by AST.

Figure 3:  Cyclic interconversion of pyridoxal phosphate and pyridoxamine phosphate during the aspartate aminotransferase reaction. = phosphate group.

3. Equilibrium: For most transamination reactions, the equilibrium constant is near 1. This allows the reaction to function in both amino acid degradation through removal of α-amino groups (for example, after consumption of a protein-rich meal) and biosynthesis of nonessential amino acids through addition of amino groups to the carbon skeletons of α-keto acids (for example, when the supply of amino acids from the diet is not adequate to meet the synthetic needs of cells).

4. Diagnostic value: Aminotransferases are normally intracellular enzymes, with the low levels found in the plasma representing the release of cellular contents during normal cell turnover. Elevated plasma levels of aminotransferases indicate damage to cells rich in these enzymes. For example, physical trauma or a disease process can cause cell lysis, resulting in release of intracellular enzymes into the blood. Two aminotransferases, AST and ALT, are of particular diagnostic value when they are found in the plasma.

a. Hepatic disease: Plasma AST and ALT are elevated in nearly all hepatic diseases but are particularly high in conditions that cause extensive cell necrosis, such as severe viral hepatitis, toxic injury, and prolonged circulatory collapse. ALT is more specific than AST for liver disease, but the latter is more sensitive because the liver contains larger amounts of AST. Serial measurements of AST and ALT (liver function tests) are often useful in determining the course of liver damage. Figure 4 shows the early release of ALT into the blood,  following ingestion of a liver toxin. [Note: The elevation in bilirubin results from hepatocellular damage that decreases the hepatic conjugation and excretion of bilirubin).]

Figure 4:  Pattern of ALT and bilirubin in the plasma, following poisoning by ingestion of the toxic mushroom Amanita phalloides.

b. Nonhepatic disease: Aminotransferases may be elevated in Nonhepatic diseases such as those that cause damage to cardiac or skeletal muscle.  However, these disorders can usually be distinguished clinically from liver disease.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.